Abstract

The stress-strength analysis is widely applied to engineering and many other scientific fields. In this article, we focus on the estimation of the stress-strength parameter for a decreasing failure rate model, i.e., the exponential-Poisson distribution, when the collection of informative data is based on three different sampling schemes, namely the simple random sampling scheme, ranked set sampling scheme, and the maximum ranked set sampling procedure with unequal sample sizes. Both classical and Bayesian methods are employed to find the point and interval estimators for the stress-strength parameter. The Metropolis-Hastings within Gibbs algorithm is proposed to approximate the Bayes point estimates. We present a simulation study, as well as an example, for the purpose of illustration and comparison. The results show that the ranked set sampling scheme outperforms the other two schemes.

References

1.
Nadarajah
S.
,
Bagheri
S. F.
,
Alizadeh
M.
, and
Bahrami Samani
E.
, “
Estimation of the Stress Strength Parameter for the Generalized Exponential-Poisson Distribution
,”
Journal of Testing and Evaluation
46
, no. 
5
(September
2018
):
2184
2202
, https://doi.org/10.1520/JTE20160650
2.
Mokhlis
N. A.
, “
Reliability of a Stress-Strength Model with Burr Type III Distributions
,”
Communications in Statistics–Theory and Methods
34
, no. 
7
(July
2005
):
1643
1657
, https://doi.org/10.1081/STA-200063183
3.
Raqab
M. Z.
,
Madi
M. T.
, and
Kundu
D.
, “
Estimation of P(Y < X) for the Three-Parameter Generalized Exponential Distribution
,”
Communications in Statistics–Theory and Methods
37
, no. 
18
(September
2008
):
2854
2864
, https://doi.org/10.1080/03610920802162664
4.
Gupta
R. C.
,
Ghitany
M. E.
, and
Al-Mutairi
D. K.
, “
Estimation of Reliability in a Parallel System with Random Sample Size
,”
Mathematics and Computers in Simulation
83
(
2012
):
44
55
, https://doi.org/10.1016/j.matcom.2012.06.017
5.
Asgharzadeh
A.
,
Valiollahi
R.
, and
Raqab
M. Z.
, “
Estimation of the Stress-Strength Reliability for the Generalized Logistic Distribution
,”
Statistical Methodology
15
(
2013
):
73
94
, https://doi.org/10.1016/j.stamet.2013.05.002
6.
Al-Mutairi
D. K.
,
Ghitany
M. E.
, and
Kundu
D.
, “
Inferences on Stress-Strength Reliability from Lindley Distributions
,”
Communications in Statistics–Theory and Methods
42
, no. 
8
(April
2013
):
1443
1463
, https://doi.org/10.1080/03610926.2011.563011
7.
Soliman
A. A.
,
Abd-Ellah
A. H.
,
Abou-Elheggag
N. A.
, and
Ahmed
E. A.
, “
Reliability Estimation in Stress-Strength Models: An MCMC Approach
,”
Statistics
47
, no. 
4
(August
2013
):
715
728
, https://doi.org/10.1080/02331888.2011.637629
8.
Ghitany
M. E.
,
Al-Mutairi
D. K.
, and
Aboukhamseen
S. M.
, “
Estimation of the Reliability of a Stress-Strength System from Power Lindley Distributions
,”
Communications in Statistics–Simulation and Computation
44
, no. 
1
(January
2015
):
118
136
, https://doi.org/10.1080/03610918.2013.767910
9.
Joukar
A.
,
Ramezani
M.
, and
MirMostafaee
S. M. T. K.
, “
Estimation of P (X > Y) for the Power Lindley Distribution Based on Progressively Type II Right Censored Samples
,”
Journal of Statistical Computation and Simulation
90
, no. 
2
(January
2020
):
355
389
, https://doi.org/10.1080/00949655.2019.1685994
10.
Kuş
C.
, “
A New Lifetime Distribution
,”
Computational Statistics & Data Analysis
51
, no. 
9
(May
2007
):
4497
4509
, https://doi.org/10.1016/j.csda.2006.07.017
11.
Adamidis
K.
and
Loukas
S.
, “
A Lifetime Distribution with Decreasing Failure Rate
,”
Statistics & Probability Letters
39
, no. 
1
(July
1998
):
35
42
, https://doi.org/10.1016/S0167-7152(98)00012-1
12.
Scollnik
D. P. M.
, “
Bayesian Analyses of an Exponential-Poisson and Related Zero Augmented Type Models
,”
Journal of Applied Statistics
49
, no. 
4
(March
2022
):
949
967
, https://doi.org/10.1080/02664763.2020.1846692
13.
Karlis
D.
, “
A Note on the Exponential Poisson Distribution: A Nested EM Algorithm
,”
Computational Statistics & Data Analysis
53
, no. 
4
(February
2009
):
894
899
, https://doi.org/10.1016/j.csda.2008.10.027
14.
Al-Mutairi
D. K.
,
Ghitany
M. E.
, and
Gupta
R. C.
, “
Estimation of Reliability in a Series System with Random Sample Size
,”
Computational Statistics & Data Analysis
55
, no. 
2
(February
2011
):
964
972
, https://doi.org/10.1016/j.csda.2010.07.027
15.
Xu
B.
,
Guo
Y.
, and
Zhu
N.
, “
The Parameter Bayesian Estimation of Two-Parameter Exponential-Poisson Distribution and Its Optimal Property
,”
Journal of Interdisciplinary Mathematics
19
, no. 
4
(July
2016
):
697
707
, https://doi.org/10.1080/09720502.2016.1179489
16.
Louzada
F.
,
Luiz Ramos
P.
, and
Henrique Ferreira
P.
, “
Exponential-Poisson Distribution: Estimation and Applications to Rainfall and Aircraft Data with Zero Occurrence
,”
Communications in Statistics–Simulation and Computation
49
, no. 
4
(April
2020
):
1024
1043
, https://doi.org/10.1080/03610918.2018.1491988
17.
Joukar
A.
,
Ramezani
M.
, and
MirMostafaee
S. M. T. K.
, “
Parameter Estimation for the Exponential-Poisson Distribution Based on Ranked Set Samples
,”
Communications in Statistics–Theory and Methods
50
, no. 
3
(February
2021
):
560
581
, https://doi.org/10.1080/03610926.2019.1639745
18.
Lam
K.
,
Sinha
B. K.
, and
Wu
Z.
, “
Estimation of Parameters in a Two-Parameter Exponential Distribution Using Ranked Set Sample
,”
Annals of the Institute of Statistical Mathematics
46
, no. 
4
(December
1994
):
723
736
, https://doi.org/10.1007/BF00773478
19.
Sadek
A.
,
Sultan
K. S.
, and
Balakrishnan
N.
, “
Bayesian Estimation Based on Ranked Set Sampling Using Asymmetric Loss Function
,”
Bulletin of the Malaysian Mathematical Sciences Society
38
, no. 
2
(April
2015
):
707
718
, https://doi.org/10.1007/s40840-014-0045-5
20.
Dey
S.
,
Salehi
M.
, and
Ahmadi
J.
, “
Rayleigh Distribution Revisited Via Ranked Set Sampling
,”
METRON
75
, no. 
1
(April
2017
):
69
85
, https://doi.org/10.1007/s40300-016-0099-2
21.
Dong
X.
,
Cui
L.
, and
Liu
F.
, “
A Further Study on Reliable Life Estimation under Ranked Set Sampling
,”
Communications in Statistics–Theory and Methods
41
, no. 
21
(November
2012
):
3888
3902
, https://doi.org/10.1080/03610926.2012.701698
22.
Albatineh
A. N.
,
Golam Kibria
B. M.
,
Wilcox
M. L.
, and
Zogheib
B.
, “
Confidence Interval Estimation for the Population Coefficient of Variation Using Ranked Set Sampling: A Simulation Study
,”
Journal of Applied Statistics
41
, no. 
4
(April
2014
):
733
751
, https://doi.org/10.1080/02664763.2013.847405
23.
Muttlak
H. A.
,
Abu-Dayyeh
W. A.
,
Saleh
M. F.
, and
Al-Sawi
E.
, “
Estimating P(Y < X) Using Ranked Set Sampling in Case of the Exponential Distribution
,”
Communications in Statistics–Theory and Methods
39
, no. 
10
(May
2010
):
1855
1868
, https://doi.org/10.1080/03610920902912976
24.
Mahdizadeh
M.
and
Zamanzade
E.
, “
Kernel-Based Estimation of P(Y > X) in Ranked Set Sampling
,”
SORT-Statistics and Operations Research Transactions
40
, no. 
2
(July–December
2016
),
243
266
.
25.
Akgül
F. G.
and
Şenoğlu
B.
, “
Estimation of P(Y < X) Using Ranked Set Sampling for the Weibull Distribution
,”
Quality Technology & Quantitative Management
14
, no. 
3
(July
2017
):
296
309
, https://doi.org/10.1080/16843703.2016.1226590
26.
Akgül
F. G.
,
Acıtaş
Ş.
, and
Şenoğlu
B.
, “
Inferences on Stress–Strength Reliability Based on Ranked Set Sampling Data in Case of Lindley Distribution
,”
Journal of Statistical Computation and Simulation
88
, no. 
15
(October
2018
):
3018
3032
, https://doi.org/10.1080/00949655.2018.1498095
27.
Akgül
F. G.
and
Şenoğlu
B.
, “
Inferences for Stress-Strength Reliability of Burr Type X Distributions Based on Ranked Set Sampling
,”
Communications in Statistics–Simulation and Computation
51
, no. 
6
(June
2022
):
3324
3340
, https://doi.org/10.1080/03610918.2020.1711949
28.
Alsadat
N.
,
Hassan
A. S.
,
Elgarhy
M.
,
Chesneau
C.
, and
Mohamed
R. E.
, “
An Efficient Stress-Strength Reliability Estimate of the Unit Gompertz Distribution Using Ranked Set Sampling
,”
Symmetry
15
, no. 
5
(May
2023
): 1121, https://doi.org/10.3390/sym15051121
29.
Biradar
B. S.
and
Santosha
C. D.
, “
Estimation of the Mean of the Exponential Distribution Using Maximum Ranked Set Sampling with Unequal Samples
,”
Open Journal of Statistics
4
, no. 
8
(September
2014
):
641
649
, https://doi.org/10.4236/ojs.2014.48060
30.
Al-Odat
M. T.
and
Al-Saleh
M. F.
, “
A Variation of Ranked Set Sampling
,”
Journal of Applied Statistical Science
10
, no. 
2
(January
2001
):
137
146
.
31.
Wang
S.
,
Chen
W.
,
Chen
M.
, and
Zhou
Y.
, “
Maximum Likelihood Estimation of the Parameters of the Inverse Gaussian Distribution Using Maximum Rank Set Sampling with Unequal Samples
,”
Mathematical Population Studies
30
, no. 
1
(January
2023
):
1
21
, https://doi.org/10.1080/08898480.2021.1996822
32.
Basikhasteh
M.
,
Lak
F.
, and
Afshari
M.
, “
Bayesian Estimation of Stress-Strength Reliability for Two-Parameter Bathtub-Shaped Lifetime Distribution Based on Maximum Ranked Set Sampling with Unequal Samples
,”
Journal of Statistical Computation and Simulation
90
, no. 
16
(November
2020
):
2975
2990
, https://doi.org/10.1080/00949655.2020.1793155
33.
Murray
R. A.
,
Ridout
M. S.
, and
Cross
J. V.
, “
The Use of Ranked Set Sampling in Spray Deposit Assessment
,”
Aspects of Applied Biology
57
(
2000
):
141
146
.
34.
Samawi
H. M.
,
Al-Saleh
M. F.
, and
Al-Saidy
O.
, “
The Matched Pair Sign Test Using Bivariate Ranked Set Sampling for Different Ranking Based Schemes
,”
Statistical Methodology
6
, no. 
4
(July
2009
):
397
407
, https://doi.org/10.1016/j.stamet.2009.02.002
35.
Varian
H. R.
, “
A Bayesian Approach to Real Estate Assessment
,” in
Studies in Bayesian Econometrics and Statistics in Honor of Leonard J. Savage
, ed.
Fienberg
S. E.
and
Zellner
A.
(
Amsterdam, the Netherlands
:
North-Holland Publishing Company
,
1975
),
195
208
.
36.
Calabria
R.
and
Pulcini
G.
, “
An Engineering Approach to Bayes Estimation for the Weibull Distribution
,”
Microelectronics and Reliability
34
, no. 
5
(May
1994
):
789
802
, https://doi.org/10.1016/0026-2714(94)90004-3
37.
Calabria
R.
and
Pulcini
G.
, “
Point Estimation Under Asymmetric Loss Functions for Left-Truncated Exponential Samples
,”
Communications in Statistics–Theory and Methods
25
, no. 
3
(January
1996
):
585
600
, https://doi.org/10.1080/03610929608831715
38.
Zellner
A.
, “
Bayesian Estimation and Prediction Using Asymmetric Loss Functions
,”
Journal of the American Statistical Association
81
, no. 
394
(June
1986
):
446
451
, https://doi.org/10.1080/01621459.1986.10478289
39.
Lehmann
E. L.
and
Casella
G.
,
Theory of Point Estimation
, 2nd ed. (
New York
:
Springer-Verlag
,
1998
).
40.
Geweke
J.
, “
Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments
,” in
Bayesian Statistics 4
, ed.
Bernardo
J. M.
,
Berger
J. O.
,
Dawid
A. P.
, and
Smith
A. F. M.
(
Oxford, UK
:
Clarendon Press
,
1992
),
169
193
.
41.
Raftery
A. E.
and
Lewis
S. M.
, “
Comment: One Long Run with Diagnostics: Implementation Strategies for Markov Chain Monte Carlo
,”
Statistical Science
7
, no. 
4
(November
1992
):
493
497
, https://doi.org/10.1214/ss/1177011143
42.
Raftery
A. E.
and
Lewis
S. M.
, “
Implementing MCMC
,” in
Markov Chain Monte Carlo in Practice
, ed.
Gilks
W. R.
,
Richardson
S.
, and
Spiegelhalter
D. J.
(
Boca Raton, FL
:
Chapman and Hall/CRC
,
1996
),
115
130
.
43.
Heidelberger
P.
and
Welch
P. D.
, “
Simulation Run Length Control in the Presence of an Initial Transient
,”
Operations Research
31
, no. 
6
(November–December
1983
):
1109
1144
, https://doi.org/10.1287/opre.31.6.1109
44.
Heidelberger
P.
and
Welch
P. D.
, “
A Spectral Method for Confidence Interval Generation and Run Length Control in Simulations
,”
Communications of the ACM
24
, no. 
4
(April
1981
):
233
245
, https://doi.org/10.1145/358598.358630
45.
Heidelberger
P.
and
Welch
P. D.
, “
Adaptive Spectral Methods for Simulation Output Analysis
,”
IBM Journal of Research and Development
25
, no. 
6
(November
1981
):
860
876
, https://doi.org/10.1147/rd.256.0860
46.
Schruben
L. W.
, “
Detecting Initialization Bias in Simulation Output
,”
Operations Research
30
, no. 
3
(May–June
1982
):
569
590
, https://doi.org/10.1287/opre.30.3.569
47.
Schruben
L.
,
Singh
H.
, and
Tierney
L.
,
A Test of Initialization Bias Hypotheses in Simulation Output, Technical Report 471
(
Ithaca, NY
:
Cornell University
,
1980
).
48.
Schruben
L.
,
Singh
H.
, and
Tierney
L.
, “
Optimal Tests for Initialization Bias in Simulation Output
,”
Operations Research
31
, no. 
6
(November–December
1983
):
1167
1178
, https://doi.org/10.1287/opre.31.6.1167
49.
R Core Team
R: A Language and Environment for Statistical Computing
(
Vienna, Austria
:
R Foundation for Statistical Computing
,
2022
).
50.
Plummer
M.
,
Best
N.
,
Cowles
K.
, and
Vines
K.
, “
CODA: Convergence Diagnosis and Output Analysis for MCMC
,”
R News
6
, no. 
1
(March
2006
):
7
11
.
51.
Plummer
M.
,
Best
N.
,
Cowles
K.
,
Vines
K.
,
Sarkar
D.
,
Bates
D.
,
Almond
R.
, and
Magnusson
A.
, “
CODA: Output Analysis and Diagnostics for MCMC
,”
R News
,
2020
, https://web.archive.org/web/20240517130814/https://cran.r-project.org/web/packages/coda/index.html
52.
Faraway
J.
,
Marsaglia
G.
,
Marsaglia
J.
, and
Baddeley
A.
, “
GOFTEST: Classical Goodness-of-Fit Tests for Univariate Distributions
,”
R News
,
2021
, https://web.archive.org/web/20240517130620/https://cran.r-project.org/web/packages/goftest/index.html
53.
Hasselman
B.
, “
NLEQSLV: Solve Systems of Nonlinear Equations
,”
R News
,
2023
, https://web.archive.org/web/20240201204539/https://cran.r-project.org/web/packages/nleqslv/index.html
54.
Mersmann
O.
,
Trautmann
H.
,
Steuer
D.
, and
Bornkamp
B.
, “
TRUNCNORM: Truncated Normal Distribution
,”
R News
,
2023
, https://web.archive.org/web/20240517135308/https://cran.r-project.org/web/packages/truncnorm/index.html
This content is only available via PDF.
You do not currently have access to this content.