Abstract

Pavement monitoring has experienced significant advancements with the integration of fiber Bragg grating (FBG) sensors, offering real-time insights into the structural health of roads. This article tackles challenges associated with the analysis of long-term data collected by FBG sensors for pavement monitoring, addressing issues such as data volume, processing, and analysis. The primary objective is to establish a streamlined process for data analysis, demonstrated through a test track featuring a single fiber and a comprehensive data collection system. The study outlines a continuous monitoring framework, placing particular emphasis on data preprocessing and peak-counting–based segmentation to enable meaningful analysis. The presented preprocessing technique incorporates wavelet multiresolution analysis for the separation of load and temperature effects, which facilitates a detailed investigation of the load-induced strain. The application of peak-counting–based segmentation aims to address variability arising from varying traffic and loading weights by dividing FBG signals into windows with similar sampling size. The study utilizes waterfall plots and box plots for the comparative analysis and visualization of FBG sensor data. This approach provides insights into traffic distribution, loading conditions, and structural changes in the asphalt pavement over time. Overall, this research contributes to the efficient utilization of FBG sensors for pavement monitoring.

References

1.
Partl
M. N.
,
Raab
C.
, and
Arraigada
M.
, “
Innovative Asphalt Research using Accelerated Pavement Testing
,”
Journal of Marine Science and Technology
23
, no. 
3
(June
2015
):
269
280
, https://doi.org/10.6119/JMST-014-0326-1
2.
Ye
Z.
,
Yan
G.
,
Wei
Y.
,
Zhou
B.
,
Li
N.
,
Shen
S.
, and
Wang
L.
, “
Real-Time and Efficient Traffic Information Acquisition via Pavement Vibration IoT Monitoring System
,”
Sensors
21
, no. 
8
(April
2021
): 2679, https://doi.org/10.3390/s21082679
3.
Pedret Rodés
J.
,
Martínez Reguero
A.
, and
Pérez-Gracia
V.
, “
GPR Spectra for Monitoring Asphalt Pavements
,”
Remote Sensing
12
, no. 
11
(June
2020
): 1749, https://doi.org/10.3390/rs12111749
4.
Liu
Z.
,
Yeoh
J. K. W.
,
Gu
X.
,
Dong
Q.
,
Chen
Y.
,
Wu
W.
,
Wang
L.
, and
Wang
D.
, “
Automatic Pixel-Level Detection of Vertical Cracks in Asphalt Pavement Based on GPR Investigation and Improved Mask R-CNN
,”
Automation in Construction
146
(
2023
): 104689, https://doi.org/10.1016/j.autcon.2022.104689
5.
Marchetti
M.
,
Dumoulin
J.
,
Fois
M.
,
Ibos
L.
,
Le Touz
N.
, and
Piau
J.-M.
, “
Thermographic Monitoring of Asphalt Concrete Surface with Phase Change Materials Inclusions for Icing Delays Purposes
,” in QIRT 2016 (
Lyons, France
:
HAL
,
2016
),
544
545
, https://doi.org/10.21611/qirt.2016.078
6.
Liu
F.
,
Liu
J.
, and
Wang
L.
, “
Asphalt Pavement Fatigue Crack Severity Classification by Infrared Thermography and Deep Learning
,”
Automation in Construction
143
(
2022
): 104575, https://doi.org/10.1016/j.autcon.2022.104575
7.
Liu
F.
,
Liu
J.
, and
Wang
L.
, “
Deep Learning and Infrared Thermography for Asphalt Pavement Crack Severity Classification
,”
Automation in Construction
140
(
2022
): 104383, https://doi.org/10.1016/j.autcon.2022.104383
8.
Manosalvas-Paredes
M.
,
Lajnef
N.
,
Chatti
K.
,
Aono
K.
,
Blanc
J.
,
Thom
N.
,
Airey
G.
, and
Lo Presti
D.
, “
Data Compression Approach for Long-Term Monitoring of Pavement Structures
,”
Infrastructures
5
, no. 
1
(January
2020
): 1, https://doi.org/10.3390/infrastructures5010001
9.
Alavi
A. H.
,
Hasni
H.
,
Lajnef
N.
, and
Chatti
K.
, “
Continuous Health Monitoring of Pavement Systems using Smart Sensing Technology
,”
Construction and Building Materials
114
(
2016
):
719
736
, https://doi.org/10.1016/j.conbuildmat.2016.03.128
10.
Qiu
X.
,
Wang
Y.
,
Xu
J.
,
Xiao
S.
, and
Li
C.
, “
Acoustic Emission Propagation Characteristics and Damage Source Localization of Asphalt Mixtures
,”
Construction and Building Materials
252
(
2020
): 119086, https://doi.org/10.1016/j.conbuildmat.2020.119086
11.
Ramakrishnan
M.
,
Rajan
G.
,
Semenova
Y.
, and
Farrell
G.
, “
Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials
,”
Sensors
16
, no. 
1
(January
2016
): 99, https://doi.org/10.3390/s16010099
12.
Imai
M.
,
Igarashi
Y.
,
Shibata
M.
, and
Miura
S.
, “
Experimental Study on Strain and Deformation Monitoring of Asphalt Structures using Embedded Fiber Optic Sensor
,”
Journal of Civil Structural Health Monitoring
4
, no. 
3
(July
2014
):
209
220
, https://doi.org/10.1007/s13349-014-0077-4
13.
Dong
Z.
,
Tan
Y.
,
Cao
L.
, and
Li
S.
, “
Rutting Mechanism Analysis of Heavy-Duty Asphalt Pavement Based on Pavement Survey, Finite Element Simulation, and Instrumentation
,”
Journal of Testing and Evaluation
40
, no. 
7
(November
2012
):
1228
1237
, https://doi.org/10.1520/JTE20120162
14.
Dong
Z.
,
Ma
X.
, and
Shao
X.
, “
Airport Pavement Responses Obtained from Wireless Sensing Network upon Digital Signal Processing
,”
The International Journal of Pavement Engineering
19
, no. 
5
(March
2018
):
381
390
, https://doi.org/10.1080/10298436.2017.1402601
15.
Al-Tarawneh
M.
,
Huang
Y.
,
Lu
P.
, and
Tolliver
D.
, “
Vehicle Classification System using In-Pavement Fiber Bragg Grating Sensors
,”
IEEE Sensors Journal
18
, no. 
7
(April
2018
):
2807
2815
, https://doi.org/10.1109/JSEN.2018.2803618
16.
Fajkus
M.
,
Fridrich
M.
,
Nedoma
J.
,
Kahankova
R.
,
Martinek
R.
,
Bednar
E.
, and
Kolarik
J.
, “
PDMS-FBG-Based Fiber Optic System for Traffic Monitoring in Urban Areas
,”
IEEE Access
8
(
2020
):
127648
127658
, https://doi.org/10.1109/ACCESS.2020.3006985
17.
Liu
H.
,
Ge
W.
,
Pan
Q.
,
Hu
R.
,
Lv
S.
, and
Huang
T.
, “
Characteristics and Analysis of Dynamic Strain Response on Typical Asphalt Pavement using Fiber Bragg Grating Sensing Technology
,”
Construction and Building Materials
310
(
2021
): 125242, https://doi.org/10.1016/j.conbuildmat.2021.125242
18.
Braunfelds
J.
,
Senkans
U.
,
Skels
P.
,
Janeliukstis
R.
,
Salgals
T.
,
Redka
D.
,
Lyashuk
I.
, et al., “
FBG-Based Sensing for Structural Health Monitoring of Road Infrastructure
,”
Journal of Sensors
2021
(
2021
):
1
11
, https://doi.org/10.1155/2021/8850368
19.
Braunfelds
J.
,
Senkans
U.
,
Skels
P.
,
Janeliukstis
R.
,
Porins
J.
,
Spolitis
S.
, and
Bobrovs
V.
, “
Road Pavement Structural Health Monitoring by Embedded Fiber-Bragg-Grating-Based Optical Sensors
,”
Sensors
22
, no. 
12
(June
2022
): 4581, https://doi.org/10.3390/s22124581
20.
Liao
M.
,
Liang
S.
,
Luo
R.
, and
Chen
Y.
, “
The Moving Load Identification Method on Asphalt Roads Based on the BP Neural Network and FBG Sensor Monitoring
,”
Construction and Building Materials
378
(
2023
): 131216, https://doi.org/10.1016/j.conbuildmat.2023.131216
21.
Liu
Z.
,
Gu
X.
,
Wu
C.
,
Ren
H.
,
Zhou
Z.
, and
Tang
S.
, “
Studies on the Validity of Strain Sensors for Pavement Monitoring: A Case Study for a Fiber Bragg Grating Sensor and Resistive Sensor
,”
Construction and Building Materials
321
(
2022
): 126085, https://doi.org/10.1016/j.conbuildmat.2021.126085
22.
Majumder
M.
,
Gangopadhyay
T. K.
,
Chakraborty
A. K.
,
Dasgupta
K.
, and
Bhattacharya
D. K.
, “
Fibre Bragg Gratings in Structural Health Monitoring—Present Status and Applications
,”
Sensors and Actuators A: Physical
147
, no. 
1
(September
2008
):
150
164
, https://doi.org/10.1016/j.sna.2008.04.008
23.
Sahota
J. K.
,
Gupta
N.
, and
Dhawan
D.
, “
Fiber Bragg Grating Sensors for Monitoring of Physical Parameters: A Comprehensive Review
,”
Optical Engineering
59
, no. 
6
(June
2020
): 060901, https://doi.org/10.1117/1.OE.59.6.060901
24.
García
I.
,
Zubia
J.
,
Durana
G.
,
Aldabaldetreku
G.
,
Illarramendi
M. A.
, and
Villatoro
J.
, “
Optical Fiber Sensors for Aircraft Structural Health Monitoring
,”
Sensors
15
, no. 
7
(July
2015
):
15494
15519
, https://doi.org/10.3390/s150715494
25.
Campanella
C. E.
,
Cuccovillo
A.
,
Campanella
C.
,
Yurt
A.
, and
Passaro
V. M. N.
, “
Fibre Bragg Grating Based Strain Sensors: Review of Technology and Applications
,”
Sensors
18
, no. 
9
(September
2018
): 3115, https://doi.org/10.3390/s18093115
26.
Golmohammadi
A.
,
Hasheminejad
N.
,
Hernando
D.
,
Vanlanduit
S.
, and
Van den bergh
W.
, “
Performance Assessment of Discrete Wavelet Transform for De-noising of FBG Sensors Signals Embedded in Asphalt Pavement
,”
Optical Fiber Technology
82
(
2024
): 103596, https://doi.org/10.1016/j.yofte.2023.103596
27.
Ni
Y. Q.
,
Xia
H. W.
,
Wong
K. Y.
, and
Ko
J. M.
, “
In-Service Condition Assessment of Bridge Deck using Long-Term Monitoring Data of Strain Response
,”
Journal of Bridge Engineering
17
, no. 
6
(November
2012
):
876
885
, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000321
28.
Xia
H. W.
,
Ni
Y. Q.
,
Wong
K. Y.
, and
Ko
J. M.
, “
Reliability-Based Condition Assessment of In-Service Bridges using Mixture Distribution Models
,”
Computers & Structures
106–107
(
2012
):
204
213
, https://doi.org/10.1016/j.compstruc.2012.05.003
29.
Ye
X.-W.
,
Su
Y.-H.
, and
Xi
P.-S.
, “
Statistical Analysis of Stress Signals from Bridge Monitoring by FBG System
,”
Sensors
18
, no. 
2
(February
2018
): 491, https://doi.org/10.3390/s18020491
30.
Azami
H.
,
Mohammadi
K.
, and
Bozorgtabar
B.
, “
An Improved Signal Segmentation using Moving Average and Savitzky-Golay Filter
,”
Journal of Signal and Information Processing
3
, no. 
1
(February
2012
):
39
44
, https://doi.org/10.4236/jsip.2012.31006
31.
Hassanpour
H.
and
Shahiri
M.
, “
Adaptive Segmentation using Wavelet Transform
,” in
2007 International Conference on Electrical Engineering
(
New York
:
Institute of Electrical and Electronics Engineers
,
2007
),
1
5
, https://doi.org/10.1109/ICEE.2007.4287348
32.
Wong
L.
and
Abdulla
W.
, “
Time-Frequency Evaluation of Segmentation Methods for Neonatal EEG Signals
,” in
2006 International Conference of the IEEE Engineering in Medicine and Biology Society
(
New York
:
Institute of Electrical and Electronics Engineers
,
2006
),
1303
1306
, https://doi.org/10.1109/IEMBS.2006.259472
This content is only available via PDF.
You do not currently have access to this content.