Abstract

A novel stainless steel fiber sintered felt (SSFSF) with honeycombed channels (SSFSFHC) is a promising support for catalytic combustion of the volatile organic compounds (VOCs). The SSFSFHC consists of stainless steel fiber, three-dimensionally reticulated porous structures, and interconnected honeycombed channels. The equivalent thermal conductivity (ETC) of the SSFSFHC is tested. It is found that the ETC of the SSFSFHC increases with the hot side temperature increasing but decreases with the porosity increasing and channel occupied area ratio increasing. The ETC of the SSFSFHC changes little with channel diameter increasing. The heat transfer model of the SSFSFHC is considered as parallel/series combinations of relevant thermal resistances. In order to estimate the ETC of the SSFSFHC, the correlation of the ETC of the SSFSF is derived. The expressions of the axial temperature under different porosities are deduced when eliminating the radial heat transfer between the channel section and the SSFSF section. The relationships of the transferred heats and the corresponding resistances along the radial direction are obtained by assuming that the radial heat transfer can be simplified as a serial of heat resistances located between the channels and the SSFSF.

Reference

1.
Lee
,
S.
,
Choi
,
I.
, and
Chang
,
D.
,
2013
, “
Multi-Objective Optimization of VOC Recovery and Reuse in Crude Oil Loading
,”
Appl. Energy
,
108
(
08
), pp.
439
447
.
2.
Scirè
,
S.
, and
Liotta
,
F. F.
,
2012
, “
Supported Gold Catalysts for the Total Oxidation of Volatile Organic Compounds
,”
Appl. Catal., B
,
125
(
25
), pp.
222
246
.
3.
Huang
,
H. B.
,
Xu
,
Y.
, and
Feng
,
Q. F.
,
2015
, “
Low Temperature Catalytic Oxidation of Volatile Organic Compounds: A Review
,”
Catal. Sci. Technol.
,
5
(
5
), pp.
2649
2669
.
4.
Liotta
,
L. F.
,
2010
, “
Catalytic Oxidation of Volatile Organic Compounds on Supported Noble Metals
,”
Appl. Catal. B
,
100
(
3–4
), pp.
403
412
.
5.
Ma
,
Y.
,
Chen
,
M.
,
Song
,
C.
, and Zheng, X.,
2008
, “
Catalytic Oxidation of Toluene, Acetone and Ethyl Acetate on a New Pt-Pd/Stainless Steel Wire Mesh Catalyst
,”
Acta Phys. -Chim. Sin.
,
24
(
7
), pp.
1132
1136
.
6.
Yan
,
Y.
,
Wang
,
L.
, and
Zhang
,
H. P.
,
2014
, “
Catalytic Combustion of Volatile Organic Compounds Over Co/ZSM-5 Coated on Stainless Steel Fibers
,”
Chem. Eng. J.
,
255
(
55
), pp.
195
204
.
7.
Song
,
C.
,
Chen
,
M.
,
Ma
,
C. A.
, and
Zheng
,
X.
,
2009
, “
Pd-Mn/Stainless Steel Wire Mesh Catalyst for Catalytic Oxidation of Toluene, Acetone and Ethyl Acetate
,”
Chin. J. Chem.
,
27
(
10
), pp.
1903
1906
.
8.
Ribeiro
,
F.
,
Silva
,
J. M.
,
Silva
,
E.
,
Vaz
,
M. F.
, and
Oliveira
,
F. A. C.
,
2011
, “
Catalytic Combustion of Toluene on Pt Zeolite Coated Cordierite Foams
,”
Catal. Today
,
176
(
1
), pp.
93
96
.
9.
Kim
,
K. J.
, and
Ahn
,
H. G.
,
2012
, “
A Study on Utilization of Stainless Steel Wire Cloth as a Catalyst Support
,”
J. Ind. Eng. Chem.
,
18
(
2
), pp.
668
673
.
10.
Zhang
,
T.
,
Chen
,
M.
,
Gao
,
Y. Y.
, and
Zhang
,
X. M.
,
2012
, “
Preparation Process and Characterization of New Pt/Stainless Steel Wire Mesh Catalyst Designed for Volatile Organic Compounds Elimination
,”
J. Cent. South Univ.
,
19
(
2
), pp.
319
323
.
11.
Cimino
,
S.
,
Lisi
,
L.
,
Mancino
,
G.
,
Musiani
,
M.
, and
Vazquez-Gomez
,
L.
,
2012
, “
Catalytic Partial Oxidation of CH4-H2 Mixtures Over Ni Foams Modified With Rh and Pt
,”
Int. J. Hydrogen Energy
,
37
(
22
), pp.
17040
17051
.
12.
Jo
,
S.
,
Jin
,
J.
, and
Kwon
,
S.
,
2010
, “
The Preparation of a Metal Foam Support of Pt/Al2O3 for Combustion of Hydrogen
,”
Catal. Today
,
155
(
1–2
), pp.
45
50
.
13.
Deng
,
J.
,
Wan
,
Z. P.
, and
Cao
,
R.
,
2016
, “
Pressure Drop Across Stainless Steel Fiber Sintered Felts With Honeycombed Channels
,”
Chem. Eng. Sci.
,
155
(
55
), pp.
268
276
.
14.
Zou
,
S. P.
,
Wan
,
Z. P.
,
Lu
,
L. S.
, and
Tang
,
Y.
,
2017
, “
Bending Behavior of Porous Sintered Stainless Steel Fiber Honeycombs
,”
J. Mater. Eng. Perform.
,
26
(
2
), pp.
744
751
.
15.
Zhao
,
C. Y.
,
Lu
,
T. J.
,
Hodson
,
H. P.
, and
Jackson
,
J. D.
,
2004
, “
The Temperature Dependence of Effective Thermal Conductivity of Open-Celled Steel Alloy Foams
,”
Mater. Sci. Eng. A
,
367
(
1–2
), pp.
123
131
.
16.
Li
,
W. Q.
, and
Qu
,
Z. G.
,
2015
, “
Experimental Study of Effective Thermal Conductivity of Stainless Steel Fiber Felt
,”
Appl. Therm. Eng.
,
86
(
6p
), pp.
119
126
.
17.
Sadeghi
,
E.
,
Hsieh
,
S.
, and
Bahrami
,
M.
,
2011
, “
Thermal Conductivity and Contact Resistance of Metal Foams
,”
J. Phys. D
,
44
(
12
), p.
125406
.
18.
Wulf
,
R.
,
Mendes
,
M. A. A.
,
Skibina
,
V.
,
AL-Zoubi
,
A.
, and
Trimis
,
D.
,
2014
, “
Experimental and Numerical Determination of Effective Thermal Conductivity of Open Cell FeCrAl-Alloy Metal Foams
,”
Int. J. Therm. Sci.
,
86
(
6t
), pp.
95
103
.
19.
Bianchi
,
E.
,
Heidig
,
T.
,
Visconti
,
C. G.
,
Groppi
,
G.
,
Freund
,
H.
, and
Tronconi
,
E.
,
2012
, “
An Appraisal of the Heat Transfer Properties of Metallic Open-Cell Foams for Strongly Exo-/Endo-Thermic Catalytic Processes in Tubular Reactors
,”
Chem. Eng. J.
,
198–199
(
99
), pp.
512
528
.
20.
Wan
,
Z. P.
,
Tang
,
Y.
,
Liu
,
Y. J.
,
AL-Zoubi
,
A.
, and
Liu
,
W. Y.
,
2007
, “
High Efficient Production of Slim Long Metal Fibers Using Bifurcating Chip Cutting
,”
J. Mater. Process. Tech.
,
189
(
1–3
), pp.
273
278
.
21.
Fang
,
C. B.
,
Wan
,
Z. P.
,
Liu
,
B.
, and
Lu
,
L.
,
2014
, “
A Novel Sintered Stainless Steel Fiber Felt With Rough Surface Morphologies
,”
Adv. Mater. Sci. Eng.
,
2014
(
01
), p.
546020
.
22.
Bergman
,
T. L.
,
Incropera
,
F. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
, Hoboken, NJ.
23.
Qu
,
Z. G.
,
Wang
,
T. S.
, and
Tao
,
W. Q.
,
2012
, “
A Theoretical Octet-Truss Lattice Unit Cell Model for Effective Thermal Conductivity of Consolidated Porous Materials Saturated With Fluid
,”
Heat Mass Transfer
,
48
(
8
), pp.
1385
1395
.
24.
Wang
,
M.
,
He
,
J.
,
Yu
,
J.
, and
Pan
,
N.
,
2007
, “
Lattice Boltzmann Modeling of the Effective Thermal Conductivity for Fibrous Materials
,”
Int. J. Therm. Sci.
,
46
(
9
), pp.
848
855
.
25.
Singh
,
R.
, and
Kasana
,
H. S.
,
2004
, “
Computational Aspects of Effective Thermal Conductivity of Highly Porous Metal Foams
,”
Appl. Therm. Eng.
,
24
(
13
), pp.
1841
1849
.
26.
Wang
,
J.
,
Carson
,
J. K.
,
North
,
M. F.
, and
Cleland
,
D. J.
,
2008
, “
A New Structural Model of Effective Thermal Conductivity for Heterogeneous Materials With Co-Continuous Phases
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2389
2397
.
27.
Kumar
,
P.
, and
Topin
,
F.
,
2014
, “
Simultaneous Determination of Intrinsic Solid Phase Conductivity and Effective Thermal Conductivity of Kelvin like Foams
,”
Appl. Therm. Eng.
,
71
(
1
), pp.
536
547
.
28.
Contento
,
G.
,
Oliviero
,
M.
,
Bianco
,
N.
, and
Naso
,
V.
,
2014
, “
The Prediction of Radiation Heat Transfer in Open Cell Metal Foams by a Model Based on the Lord Kelvin Representation
,”
Int. J. Heat Mass Transfer
,
76
(
6e
), pp.
499
508
.
You do not currently have access to this content.