Abstract

Fabric drying is an energy-intensive process, which generally involves blowing hot dry air across tumbling wet fabric to facilitate evaporation and moisture removal. Most of the energy supplied is used to overcome the enthalpy of vaporization for water. Although this process tends to be inefficient, it is fairly simple and forms the basis for the majority of existing clothes dryer technology today. To address the relatively low efficiency, a new method of drying called “direct contact ultrasonic fabric drying” is proposed. The process involves using high-frequency vibration introduced by piezoelectric transducers, which are in contact with wet fabric. The vibration is used to extract water droplets from the fabric mechanically. In this study, a total of 24 individual transducers are used in a module to dry a 142 cm2 sized fabric. The performance characterization of this single module has enabled successful scale-up of the system to a midscale prototype dryer, which can be used to ultrasonically dry clothing-sized fabric (∼750 cm2). The first-generation ultrasonic fabric dryer fabricated uses as little as 17% of the energy needed by traditional evaporation-based drying techniques. In addition to experimental data, this paper presents the results of a kinetic and scaling analysis that provides some important insights into ultrasonic drying.

References

1.
Zhang
,
W.
,
Yao
,
Y.
,
He
,
B.
, and
Wang
,
R.
,
2011
, “
The Energy-Saving Characteristic of Silica Gel Regeneration With High-Intensity Ultrasound
,”
Appl. Energy
,
88
(
6
), pp.
2146
2156
.
2.
Yang
,
Z.
,
Zhang
,
K.
,
Hwang
,
Y.
, and
Lian
,
Z.
,
2016
, “
Performance Investigation on the Ultrasonic Atomization Liquid Desiccant Regeneration System
,”
Appl. Energy
,
171
, pp.
12
25
.
3.
Tan
,
H.
,
Tao
,
T.
,
Xu
,
G.
,
Zhang
,
S.
,
Wang
,
D.
, and
Luo
,
X.
,
2014
, “
Experimental Study on Defrosting Mechanism of Intermittent Ultrasonic Resonance for a Finned-Tube Evaporator
,”
Exp. Therm. Fluid Sci.
,
52
, pp.
308
317
.
4.
Tan
,
H.
,
Xu
,
G.
,
Tao
,
T.
,
Sun
,
X.
, and
Yao
,
W.
,
2015
, “
Experimental Investigation on the Defrosting Performance of a Finned-Tube Evaporator Using Intermittent Ultrasonic Vibration
,”
Appl. Energy
,
158
, pp.
220
232
.
5.
Orrego
,
S.
,
Shoele
,
K.
,
Ruas
,
A.
,
Doran
,
K.
,
Caggiano
,
B.
,
Mittal
,
R.
, and
Kang
,
S. H.
,
2017
, “
Harvesting Ambient Wind Energy With an Inverted Piezoelectric Flag
,”
Appl. Energy
,
194
, pp.
212
222
.
6.
Xiong
,
H.
, and
Wang
,
L.
,
2016
, “
Piezoelectric Energy Harvester for Public Roadway: On-Site Installation and Evaluation
,”
Appl. Energy
,
174
, pp.
101
107
.
7.
Jaffe
,
B.
,
Cook
,
W.
, and
Jaffe
,
H.
,
1971
,
Piezoelectric Ceramics
,
Academic Press
,
New York
.
8.
Gallego-Juárez
,
J. A.
, and
Riera
,
E.
,
2011
, “
Technologies and Applications of Airborne Power Ultrasound in Food Processing
,”
Ultrasound Technologies for Food and Bioprocessing
,
H.
Feng
,
G.
Barbosa-Canovas
, and
J.
Weiss
, eds.,
Springer New York
,
New York
, pp.
617
641
.
9.
Gallego-Juárez
,
J.
,
1998
, “
Some Applications of Air-Borne Power Ultrasound to Food Processing
,”
Ultrasound in Food Processing
,
M. J. W.
Povey
, and
T. J.
Mason
, eds.,
Thomson Science
,
London
, pp.
127
143
.
10.
Gallego-Juarez
,
J. A.
,
Rodriguez-Corral
,
G.
,
Gálvez Moraleda
,
J. C.
, and
Yang
,
T. S.
,
1999
, “
A New High-Intensity Ultrasonic Technology for Food Dehydration
,”
Drying Technol.
,
17
(
3
), pp.
597
608
.
11.
Mujumdar
,
A. S.
,
2000
,
Drying Technology in Agriculture and Food Sciences
,
Science Publishers
,
Enfield, CT
.
12.
Mulet
,
A.
,
Cárcel
,
J. A.
,
Sanjuán
,
N.
, and
Bon
,
J.
,
2003
, “
New Food Drying Technologies - Use of Ultrasound
,”
Food Sci. Technol. Int.
,
9
(
3
), pp.
215
221
.
13.
de la Fuente-Blanco
,
S.
,
Riera-Franco de Sarabia
,
E.
,
Acosta-Aparicio
,
V. M.
,
Blanco-Blanco
,
A.
, and
Gallego-Juárez
,
J. A.
,
2006
, “
Food Drying Process by Power Ultrasound
,”
Ultrasonics
,
44
(
Suppl
.), pp.
e523
e527
.
14.
García-Pérez
,
J. V.
,
Cárcel
,
J. A.
,
de la Fuente-Blanco
,
S.
, and
Riera-Franco de Sarabia
,
E.
,
2006
, “
Ultrasonic Drying of Foodstuff in a Fluidized Bed: Parametric Study
,”
Ultrasonics
,
44
(
Suppl
.), pp.
e539
e543
.
15.
García-Pérez
,
J. V.
,
Cárcel
,
J. A.
,
Benedito
,
J.
, and
Mulet
,
A.
,
2007
, “
Power Ultrasound Mass Transfer Enhancement in Food Drying
,”
Food Bioprod. Process.
,
85
(
3
), pp.
247
254
.
16.
Tarleton
,
E. S.
, and
Wakeman
,
R. J.
,
1998
, “
Ultrasonically Assisted Separation Processes
,”
Ultrasound in Food Processing
,
M. J. W.
Povey
, and
T. J.
Mason
, eds.,
Thomson Science
,
London
, p.
193
.
17.
Legay
,
M.
,
Gondrexon
,
N.
,
Le Person
,
S.
,
Boldo
,
P.
, and
Bontemps
,
A.
,
2011
, “
Enhancement of Heat Transfer by Ultrasound: Review and Recent Advances
,”
Int. J. Chem. Eng.
,
2011
, p.
17
.
18.
Maehara
,
N.
,
Ueha
,
S.
, and
Mori
,
E.
,
1986
, “
Influence of the Vibrating System of a Multipinhole‐Plate Ultrasonic Nebulizer on Its Performance
,”
AIP Rev. Sci. Instrum.
,
57
(
11
), pp.
2870
2876
.
19.
Barreras
,
F.
,
Amaveda
,
H.
, and
Lozano
,
A.
,
2002
, “
Transient High-Frequency Ultrasonic Water Atomization
,”
Exp. Fluids
,
33
(
3
), pp.
405
413
.
20.
Ramisetty
,
K. A.
,
Pandit
,
A. B.
, and
Gogate
,
P. R.
,
2013
, “
Investigations Into Ultrasound Induced Atomization
,”
Ultrason. Sonochem.
,
20
(
1
), pp.
254
264
.
21.
Khmelev
,
V. N.
,
Savin
,
I. I.
,
Abramenko
,
D. S.
,
Tsyganok
,
S. N.
,
Barsukov
,
R. V.
, and
Lebedev
,
A. N.
,
2006
, “
Research the Acoustic Cloth Drying Process in Mock-Up of Drum-Type Washing Machine
,”
International Workshops and Tutorials on Electron Devices and Materials
, pp.
223
228
.
22.
Momen
,
A. M.
,
Gluesenkamp
,
K. R.
,
Vineyard
,
E. A.
, and
Kisner
,
R. A.
,
2016
, “
Dryer Using High Frequency Vibration
,” Patent No. PCT/US2016/030885.
23.
Momen
,
A. M.
,
Kokou
,
E.
,
Bansal
,
P.
,
Gluesenkamp
,
K. R.
, and
Abdelaziz
,
O.
,
2015
, “
Preliminary Investigation of Novel Direct Contact Ultrasonic Fabric Drying
,”
ASME
Paper No. IMECE2015-50479.
24.
Peng
,
C.
,
Ravi
,
S.
,
Patel
,
V.
,
Momen
,
A.
, and
Moghaddam
,
S.
,
2017
, “
Physics of Direct-Contact Ultrasonic Cloth Drying Process
,”
Energy
,
125
, pp.
498
508
.
25.
U.S. Government Publishing Office,
2013
, “
Energy Conservation Program for Consumer Products: Subpart B, ‘Test Procedures’; Appendix D/D1/D2, ‘Uniform Test Method for Measuring the Energy Consumption of Clothes Dryers
,”’ Code of Federal Regulations, U.S. Government Publishing Office, Washington, DC, Document No.
10 CFR 430
.
26.
Hsieh
,
Y.-L.
,
1995
, “
Liquid Transport in Fabric Structures
,”
Textile Res. J.
,
65
(
5
), pp.
299
307
.
You do not currently have access to this content.