Abstract

The Li-ion battery operation life is strongly dependent on the operating temperature and the temperature variation that occurs within each individual cell. Liquid-cooling is very effective in removing substantial amounts of heat with relatively low flow rates. On the other hand, air-cooling is simpler, lighter, and easier to maintain. However, for achieving similar cooling performance, a much higher volumetric air flow rate is required due to its lower heat capacity. This paper describes the fundamental differences between air-cooling and liquid-cooling applications in terms of basic flow and heat transfer parameters for Li-ion battery packs in terms of QITD (inlet temperature difference). For air-cooling concepts with high QITD, one must focus on heat transfer devices with relatively high heat transfer coefficients (100–150 W/m2/K) at air flow rates of 300–400 m3/h, low flow induced noise, and low-pressure drops. This can be achieved by using turbulators, such as delta winglets. The results show that the design concepts based on delta winglets can achieve QITD of greater than 150 W/K.

References

1.
Kim
,
U.
,
Yi
,
L.
,
Shin
,
C.
,
Han
,
T.
, and
Park
,
S.
, “
Modelling the Thermal Behavior of a Lithium-Ion Battery During Charge
,”
J. Power Sources
,
196
(
11
), pp.
5115
5121
.
2.
Yi
,
J.
,
Jim
,
U.
,
Shin
,
C.
,
Han
,
T.
, and
Park
,
S.
, “
Three-Dimensional Thermal Modeling of a Lithium-Ion Battery Considering the Combined Effects of the Electrical and Thermal Contact Resistances Between Current Collecting Tab
,”
J. Electrochem. Soc.
,
160
(
3
), pp.
A437
A443
.
3.
Kim
,
U.
,
Yi
,
J.
,
Shin
,
C.
,
Han
,
T.
,
Par
,
S.
,
Kim
,
U.
,
Yi
,
L.
,
Shin
,
C.
,
Han
,
T.
, and
Park
,
S.
, “
Modeling the Dependence of the Discharge Behavior of a Lithium-Ion Battery on the Environmental Temperature
,”
J. Electrochem. Soc.
,
158
(
5
), pp.
A611
A618
.
4.
Han
,
T.
,
2012
, “
Development of Computer-Aided Design Tools for Automotive Batteries
,” DOE Merit Review, Washington, DC, https://energy.gov/sites/prod/files/2014/03/f10/es119_han_2012_o.pdf
5.
Han
,
T.
,
Kim
,
G.
, and
Collins
,
L.
,
2012
, “
Development of Computer-Aided Design Tools for Automotive Batteries-CAEBAT
,” Ansys Automotive Simulations, World Congress, Munich, Germany, June 7--8, pp. 1–34.
6.
Yen
,
E.
,
Chen
,
K.-H.
,
Han
,
T.
, and
Khalighi
,
B.
,
2016
, “
Application of CAEBAT Full Field Approach for a Liquid-Cooled Automotive Battery Pack
,”
SAE
Paper No. Paper 2016-01-1217
.
7.
Kizilel
,
R.
,
Sabbah
,
R.
,
Selman
,
J.
,
Robert
,
J.
, and
Al-Hallaj
,
S.
,
2009
, “
An Alternative Cooling System to Enhance the Safety of Li-Ion Battery Packs
,”
J. Power Sources
,
194
(
2
), pp.
1105
1112
.
8.
Bergles
,
A. E.
, and
Bar-Cohen
,
A.
,
1990
, “
Direct Liquid Cooling of Microelectronic Components
,”
Advances in Thermal Modeling of Electronic Components and Systems
, Vol.
2
,
ASME
,
New York
, pp.
233
342
.
9.
Haramura
,
Y.
, and
Katto
,
Y.
,
1983
, “
A New Hydrodynamic Model of Critical Heat Flux Applicable Widely to Both Pool and Forced Convective Boiling on Submerged Bodies in Saturated Liquids
,”
Int. J. Heat Mass Transfer
,
26
(
3
), pp.
389
399
.
10.
Ramilson
,
J. M.
, and
Lienhard
,
J. H.
,
1987
, “
Transition Boiling Heat Transfer and Film Transition Regime
,”
ASME J. Heat Transfer
,
109
, pp.
746
752
.
11.
Webb
,
B. W.
, and
Ma
,
C. F.
,
1995
, “
Single Phase Liquid Jet Impingement Heat Transfer
,”
Adv. Heat Transfer
,
26
, pp.
105
217
.
12.
Rahman
,
M. M.
, and
Bula
,
A. J.
,
1998
, “
Numerical Modeling of Conjugate Heat Transfer During Free Liquid Jet Impingement
,” Proceedings of the ASME Advanced Energy Systems Division, American Society of Mechanical Engineers, New York.
13.
Fujimoto
,
H.
,
Hirohiko
,
T.
,
Hatta
,
N.
, and
Viskanta
,
R.
,
1999
, “
Numerical Simulation of Transient Cooling of a Hot Solid by an Impinging Free Surface Jet
,”
Numer. Heat Transfer A
,
36
, pp.
767
780
.
14.
Liu
,
Z. H.
, and
Zhu
,
Q. Z.
,
2002
, “
Predication of Critical Heat Flux for Convective Boiling of Saturated Water Jet Impingement on the Stagnation Zone
,”
ASME J. Heat Transfer
,
124
(
6
), pp.
1125
1130
.
15.
Yao
,
S. C.
,
Deb
,
S.
, and
Hammouda
,
N.
,
1989
, “
Impact Spray Boiling for Thermal Control of Electronic Systems
,”
Heat Transfer Electron.
,
111
, pp.
129
133
.
16.
Cho
,
C.
, and
Ponzel
,
R.
,
1997
, “
Experimental Study on the Spray Cooling of a Heated Solid Surface
,” Proceedings of the ASME Fluids Engineering Division, American Society of Mechanical Engineers, New York.
17.
Lasance
,
C.
, and
Moffat
,
C.
,
2005
, “
Advances in High-Performance Cooling for Electronics Cooling
,”
Electron. Cool. J.
,
11
(
5
), pp. 22–39.https://www.electronics-cooling.com/2005/11/advances-in-high-performance-cooling-for-electronics/
18.
Chen
,
K.-H.
,
Han
,
T.
,
Khalighi
,
B.
, and
Klaus
,
P.
,
2017
, “
Air Colling Concepts for Li-Ion Battery Pack in Cell Level
,”
ASME
Paper No. HT2017-4701.
19.
Han
,
T.
, and
Chen
,
K.-H.
,
2009
, “
Assessment of Various Environmental Thermal Loads on Passenger Compartment Soak and Cool-Down Analyses
,”
SAE
Paper No. 2009-01-1148
.
20.
Gentry
,
M.
, and
Jacobi
,
A.
,
1997
, “
Heat Transfer Enhancement by Delta-Wing Vortex Generators on a Flat Plate: Vortex Interactions With the Boundary Layer
,”
Exp. Therm. Fluid Sci.
,
14
(
3
), pp.
231
242
.
21.
Lucca-Negro
,
O.
, and
O'Doherty
,
T.
,
2001
, “
Vortex Breakdown: A Review
,”
Prog. Energy Combust. Sci.
,
27
(
4
), pp.
431
481
. Vol
22.
Jacobi
,
A.
, and
Shah
,
R.
,
1995
, “
Heat Transfer Surface Enhancement Through the Use of Longitudinal Vortices: A Review of Recent Progress
,”
Exp. Therm. Fluid Sci.
,
11
(
3
), pp.
295
309
.
23.
Lukhanin
,
A.
,
Belyaev
,
A.
,
Fedorchenko
,
D.
,
Khazhmuradov
,
M.
,
Lukhanin
,
O.
,
Rudychev
,
Y.
, and
Rohatgi
,
U. S.
,
2012
, “
Thermal Characteristics of Air Flow Cooling in the Lithium Ion Batteries Experimental Chamber
,”
ASME
Paper No. HT2012-58173.
You do not currently have access to this content.