Abstract

Owing to the high storage capacity of the latent heat energy storage unit (LHSU), it is preferred among other types of thermal energy storage to overcome the mismatch between energy supply and demand. The orientation of the LHSU affects the melting process of the phase change material (PCM), and this effect could vary according to the fin shape of the LHSU. Thus, the present study aims to numerically examine the impact of vertical and horizontal orientations on the longitudinal, spiral, and annular finned shell and tube LHSUs. The computational fluid dynamics simulation solved the time-dependent conservation equations of mass, momentum, and energy in the three-dimensional domain. The enthalpy-porosity and the Boussinesq approximation were used respectively to simulate the PCM phase change and the change in density. The results show that the LHSUs have completely different behavior in the vertical orientation than in the horizontal orientation due to the various obstructions to the natural convection flow induced by the fins, depending on the fin shape, and the direction of natural convection flow. In the vertical orientation, the annular finned LHSU has a faster melting rate than the longitudinal finned LHSU by 25.6%. In contrast, in the horizontal orientation, the longitudinal finned LHSU melted more rapidly than the annular finned LHSU by 52.5%. The spiral finned LHSU performance was moderate between the two other finned LHSUs in both orientations due to its spiral shape that lies between the shape of the annular and longitudinal fins.

References

1.
Shabgard
,
H.
,
Song
,
L.
, and
Zhu
,
W.
,
2018
, “
Heat Transfer and Exergy Analysis of a Novel Solar-Powered Integrated Heating, Cooling, and Hot Water System With Latent Heat Thermal Energy Storage
,”
Energy Convers. Manage.
,
175
, pp.
121
131
.
2.
Mahdi
,
J. M.
, and
Nsofor
,
E. C.
,
2017
, “
Melting Enhancement in Triplex-Tube Latent Thermal Energy Storage System Using Nanoparticles-Fins Combination
,”
Int. J. Heat Mass Transf.
,
109
, pp.
417
427
.
3.
Darzi
,
A. A.
,
Jourabian
,
M.
, and
Farhadi
,
M.
,
2016
, “
Melting and Solidification of PCM Enhanced by Radial Conductive Fins and Nanoparticles in Cylindrical Annulus
,”
Energy Convers. Manage.
,
118
, pp.
253
263
.
4.
Dhaidan
,
N. S.
,
2017
, “
Nanostructures Assisted Melting of Phase Change Materials in Various Cavities
,”
Appl. Therm. Eng.
,
111
, pp.
193
212
.
5.
Farsani
,
R. Y.
,
Raisi
,
A.
,
Nadooshan
,
A. A.
, and
Vanapalli
,
S.
,
2017
, “
Does Nanoparticles Dispersed in a Phase Change Material Improve Melting Characteristics?
,”
Int. Commun. Heat Mass Transf.
,
89
, pp.
219
229
.
6.
Wang
,
G.
,
Wei
,
G.
,
Xu
,
C.
,
Ju
,
X.
,
Yang
,
Y.
, and
Du
,
X. J.
,
2019
, “
Numerical Simulation of Effective Thermal Conductivity and Pore-Scale Melting Process of PCMs in Foam Metals
,”
Appl. Therm. Eng.
,
147
, pp.
464
472
.
7.
Abdulateef
,
J.
,
Hasan
,
A.
,
Hasan
,
F.
, and
Mahdi
,
M. S.
,
2020
, “
Role of Composite Phase Change Material on the Thermal Performance of a Latent Heat Storage System: Experimental Investigation
,”
J. Harbin Inst. Tech.
,
27
(
1
), pp.
44
51
. .
8.
Mahdi
,
M. S.
,
Mahood
,
H. B.
,
Mahdi
,
J. M.
,
Khadom
,
A. A.
, and
Campbell
,
A. N.
,
2020
, “
Improved PCM Melting in a Thermal Energy Storage System of Double-Pipe Helical-Coil Tube
,”
Energy Convers. Manage.
,
203
, p.
112238
.
9.
Mahood
,
H. B.
,
Mahdi
,
M. S.
,
Monjezi
,
A. A.
,
Khadom
,
A. A.
, and
Campbell
,
A. N.
,
2020
, “
Numerical Investigation on the Effect of Fin Design on the Melting of Phase Change Material in a Horizontal Shell and Tube Thermal Energy Storage
,”
J. Energy Storage.
,
29
, p.
101331
.
10.
Mahdi
,
M. S.
,
Mahood
,
H. B.
,
Campbell
,
A. N.
, and
Khadom
,
A. A.
,
2020
, “
Experimental Study on the Melting Behavior of a Phase Change Material in a Conical Coil Latent Heat Thermal Energy Storage Unit
,”
Appl. Therm. Eng.
,
175
, p.
114684
.
11.
Abdulateef
,
A. M.
,
Mat
,
S.
,
Abdulateef
,
J.
,
Sopian
,
K.
, and
Al-Abidi
,
A. A.
,
2018
, “
Geometric and Design Parameters of Fins Employed for Enhancing Thermal Energy Storage Systems: A Review
,”
Renew. Sustain. Energy Rev.
,
82
, pp.
1620
1635
.
12.
Vogel
,
J.
, and
Johnson
,
M.
,
2019
, “
Natural Convection During Melting in Vertical Finned Tube Latent Thermal Energy Storage Systems
,”
Appl. Energy
,
246
, pp.
38
52
.
13.
Mahdi
,
M. S.
,
Khadom
,
A. A.
,
Mahood
,
H. B.
, and
Campbell
,
A. N.
,
2021
, “
Numerical Study of Latent Heat Storage Unit Thermal Performance Enhancement Using Natural Inspired Fins
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1076
, p.
01202
. .
14.
Li
,
H.
,
Hu
,
C.
,
He
,
Y.
,
Tang
,
D.
,
Wang
,
K.
, and
Huang
,
W.
,
2021
, “
Effect of Perforated Fins on the Heat-Transfer Performance of Vertical Shell-and-Tube Latent Heat Energy Storage Unit
,”
J. Energy Storage
,
39
, p.
102647
.
15.
Mahdi
,
M. S.
,
Mahood
,
H. B.
,
Hasan
,
A. F.
, and
Khadom
,
A. A.
,
2020
, “
Solidification Enhancement of Phase Change Material Implemented in Latent Heat Thermal Energy Storage
,”
AIP Conf. Proc.
,
2213
, p.
020039
.
16.
Longeon
,
M.
,
Soupart
,
A.
,
Fourmigué
,
J.-F.
,
Bruch
,
A.
, and
Marty
,
P.
,
2013
, “
Experimental and Numerical Study of Annular PCM Storage in the Presence of Natural Convection
,”
Appl. Energy
,
112
, pp.
175
185
.
17.
Rathod
,
M. K.
, and
Banerjee
,
J.
,
2015
, “
Thermal Performance Enhancement of Shell and Tube Latent Heat Storage Unit Using Longitudinal Fins
,”
Appl. Therm. Eng.
,
75
, pp.
1084
1092
.
18.
Li
,
H.
,
Hu
,
C.
,
He
,
Y.
,
Tang
,
D.
, and
Wang
,
K.
,
2021
, “
Influence of Fin Parameters on the Melting Behavior in a Horizontal Shell-and-Tube Latent Heat Storage Unit With Longitudinal Fins
,”
J. Energy Storage
,
34
, p.
102230
.
19.
Yang
,
X.
,
Lu
,
Z.
,
Bai
,
Q.
,
Zhang
,
Q.
,
Jin
,
L.
, and
Yan
,
J.
,
2017
, “
Thermal Performance of a Shell-and-Tube Latent Heat Thermal Energy Storage Unit: Role of Annular Fins
,”
Appl. Energy
,
202
, pp.
558
570
.
20.
Tiari
,
S.
,
Hockins
,
A.
, and
Mahdavi
,
M.
,
2021
, “
Numerical Study of a Latent Heat Thermal Energy Storage System Enhanced by Varying Fin Configurations
,”
Case Studies Therm. Eng.
,
25
, p.
100999
.
21.
Mahdi
,
M. S.
,
Hasan
,
A. F.
,
Mahood
,
H. B.
,
Campbell
,
A. N.
,
Khadom
,
A. A.
,
Karim
,
A. M. A.
, and
Sharif
,
A. O.
,
2019
, “
Numerical Study and Experimental Validation of the Effects of Orientation and Configuration on Melting in a Latent Heat Thermal Storage Unit
,”
J. Energy Storage
,
23
, pp.
456
468
.
22.
Kalapala
,
L.
, and
Devanuri
,
J. K.
,
2021
, “
Effect of Orientation on Thermal Performance of a Latent Heat Storage System Equipped With Annular Fins—An Experimental and Numerical Investigation
,”
Appl. Therm. Eng.
,
183
(
2
), p.
116244
.
23.
Agyenim
,
F.
,
Eames
,
P.
, and
Smyth
,
M.
,
2009
, “
A Comparison of Heat Transfer Enhancement in a Medium Temperature Thermal Energy Storage Heat Exchanger Using Fins
,”
Sol. Energy
,
83
(
9
), pp.
1509
1520
.
24.
Hassan
,
A. K.
,
Abdulateef
,
J.
,
Mahdi
,
M. S.
, and
Hasan
,
A. F.
,
2020
, “
Experimental Evaluation of Thermal Performance of Two Different Finned Latent Heat Storage Systems
,”
Case Studies Therm. Eng.
,
21
, p.
100675
.
25.
Lu
,
B.
,
Zhang
,
Y.
,
Sun
,
D.
,
Yuan
,
Z.
, and
Yang
,
S.
,
2021
, “
Experimental Investigation on Thermal Behavior of Paraffin in a Vertical Shell and Spiral Fin Tube Latent Heat Thermal Energy Storage Unit
,”
Appl. Therm. Eng.
,
187
, p.
116575
.
26.
Duan
,
J.
,
Xiong
,
Y.
, and
Yang
,
D.
,
2020
, “
Study on the Effect of Multiple Spiral Fins for Improved Phase Change Process
,”
Appl. Therm. Eng.
,
169
, p.
114966
.
27.
Mehta
,
D. S.
,
Vaghela
,
B.
,
Rathod
,
M. K.
, and
Banerjee
,
J.
,
2020
, “
Thermal Performance Augmentation in Latent Heat Storage Unit Using Spiral Fin: An Experimental Analysis
,”
J. Energy Storage
,
31
, p.
101776
.
28.
Ghalambaz
,
M.
,
Mahdi
,
J. M.
,
Shafaghat
,
A.
,
Eisapour
,
A. H.
,
Younis
,
O.
,
Sardari
,
P. T.
, and
Yaïci
,
W.
,
2021
, “
Effect of Twisted Fin Array in a Triple-Tube Latent Heat Storage System During the Charging Mode
,”
Sustainability
,
13
(
5
), p.
2685
.
29.
Mehta
,
D. S.
,
Vaghela
,
B.
,
Rathod
,
M. K.
, and
Banerjee
,
J.
,
2021
, “
Heat Transfer Enhancement Using Spiral Fins in Different Orientations of Latent Heat Storage Unit
,”
Int. J. Therm. Sci.
,
169
, p.
107060
.
30.
Tiari
,
S.
, and
Hockins
,
A.
,
2021
, “
An Experimental Study on the Effect of Annular and Radial Fins on Thermal Performance of a Latent Heat Thermal Energy Storage Unit
,”
J. Energy Storage
,
44
, p.
103541
.
31.
Mourad
,
A.
,
Qasem
,
N. A. A.
,
Abderrahmane
,
A.
,
Marzouki
,
R.
,
Guedri
,
K.
,
Younis
,
O.
,
Shah
,
N. A.
, and
Botmart
,
T.
,
2022
, “
Numerical Study on n-Octadecane PCM Melting Process Inside a Pear-Shaped Finned Container
,”
Case Studies Therm. Eng.
,
38
, p.
102328
.
32.
Safari
,
V.
,
Kamkari
,
B.
,
Hooman
,
K.
, and
Khodadadi
,
J. M.
,
2022
, “
Sensitivity Analysis of Design Parameters for Melting Process of Lauric Acid in the Vertically and Horizontally Oriented Rectangular Thermal Storage Units
,”
Energy
,
255
, p.
124521
.
33.
Mahdi
,
M. S.
,
Mahood
,
H. B.
,
Khadom
,
A. A.
,
Campbell
,
A. N.
,
Hasan
,
M.
, and
Sharif
,
A. O.
,
2019
, “
Experimental Investigation of the Thermal Performance of a Helical Coil Latent Heat Thermal Energy Storage for Solar Energy Applications
,”
Therm. Sci. Eng. Prog.
,
10
, pp.
287
298
.
34.
Seddegh
,
S.
,
Wang
,
X.
, and
Henderson
,
A. D.
,
2016
, “
A Comparative Study of Thermal Behaviour of a Horizontal and Vertical Shell-and-Tube Energy Storage Using Phase Change Materials
,”
Appl. Therm. Eng.
,
93
, pp.
348
358
.
35.
Mahdi
,
M. S.
,
Mahood
,
H. B.
,
Khadom
,
A. A.
, and
Campbell
,
A. N.
,
2021
, “
Numerical Simulations and Experimental Verification of the Thermal Performance of Phase Change Materials in a Tube-Bundle Latent Heat Thermal Energy Storage System
,”
Appl. Therm. Eng.
,
194
, p.
117079
.
36.
Shokouhmand
,
H.
, and
Kamkari
,
B.
,
2013
, “
Experimental Investigation on Melting Heat Transfer Characteristics of Lauric Acid in a Rectangular Thermal Storage Unit
,”
Exp. Therm. Fluid Sci.
,
50
, pp.
201
212
.
37.
Brent
,
A.
,
Voller
,
V.
, and
Reid
,
K.
,
1988
, “
Enthalpy-Porosity Technique for Modelling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal, Numerical Heat Transfer
,”
Int. J. Comput. Meth.
,
133
, pp.
297
318
. .
38.
Cengel
,
A. Y.
,
2007
,
Heat and Mass Transfer a Practical Approach
,
Tata McGraw-Hill
,
New York
.
39.
Mahdi
,
M. S.
,
Khadom
,
A. A.
,
Mahood
,
H. B.
,
Yaqup
,
M. A. R.
,
Hussain
,
J. M.
,
Salih
,
K. I.
, and
Kazem
,
H. A.
,
2019
, “
Effect of Fin Geometry on Natural Convection Heat Transfer in Electrical Distribution Transformer: Numerical Study and Experimental Validation
,”
Therm. Sci. Eng. Prog.
,
14
, p.
100414
.
40.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transf.
,
15
(
2
), pp.
301
314
.
41.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Pearson Education
,
New York
.
42.
Mahdi
,
M. S.
,
Mahood
,
H. B.
,
Campbell
,
A. N.
, and
Khadom
,
A. A.
,
2021
, “
Natural Convection Improvement of PCM Melting in Partition Latent Heat Energy Storage: Numerical Study With Experimental Validation
,”
Int. Commun. Heat Mass Transf.
,
126
, p.
105463
.
43.
Mahdi
,
M. S.
,
Mahood
,
H. B.
,
Hasan
,
A. F.
,
Khadom
,
A. A.
, and
Campbell
,
A. N.
,
2019
, “
Numerical Study on the Effect of the Location of the Phase Change Material in a Concentric Double Pipe Latent Heat Thermal Energy Storage Unit
,”
Therm. Sci. Eng. Prog.
,
11
, pp.
40
49
.
You do not currently have access to this content.