Abstract

Cooling techniques are extensively employed to protect turbine components from damage due to extremely high operating temperatures. Despite the availability of multiple cooling geometries, the focus is on investigating the thermal and flow characteristics of cylindrical and fan-shaped injection hole designs. Using a realizable k–ε model, we compare the thermal and flow characteristics of these geometries under identical operating conditions. The research analyzes the impact of vortex interactions and momentum flux ratio on overall (area-averaged) film cooling effectiveness. The study explores the flow structure, vortex interactions, and the effects of blowing ratio (BR = 0.2–2.0) and momentum flux ratio (MR = 0.3–3.5) on film cooling. Additionally, the formation and dynamics of the anti-counter rotating vortex pair (anti-CRVP) in a fan-shaped arrangement are elucidated. The findings indicate that in the fan-shaped case, jet core length is important for enhancing cooling performance. The formation of distinct vortices, such as anti-CRVPs, at higher BRs significantly improves cooling by delaying flow separation. The favorable impact of the anti-CRVP is most pronounced at higher BRs in the fan-shaped configuration. This study also reveals that the geometrical shape of the cooling holes greatly affects the overall film cooling effectiveness, which improves with increasing BR and MR for fan-shaped holes.

References

1.
Grootenhuis
,
P.
,
1959
, “
The Mechanism and Application of Effusion Cooling
,”
J. R. Aeronaut. Soc.
,
63
(
578
), pp.
73
89
.
2.
Lutum
,
E.
, and
Johnson
,
B. V.
,
1999
, “
Influence of the Hole Length-to-Diameter Ratio on Film Cooling With Cylindrical Holes
,”
ASME J. Turbomach.
,
121
(
2
), pp.
209
216
.
3.
Wright
,
L.
, and
Gohardani
,
A.
,
2009
, “
Effect of Coolant Ejection in Rectangular and Trapezoidal Trailing-Edge Cooling Passages
,”
J. Thermophys. Heat Transfer
,
23
(
2
), pp.
316
326
.
4.
Ekkad
,
S.
, and
Han
,
J. C.
,
2015
, “
A Review of Hole Geometry and Coolant Density Effect on Film Cooling
,”
Front. Heat Mass Transfer
,
6
(
1
), pp.
1
14
.
5.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
6.
Stiegler
,
Z.
, and
Issakhanian
,
E.
,
2019
, “
Novel Hole Shapes for Film Cooling Studies of Turbine Blades
,”
AIAA Propulsion and Energy 2019 Forum
,
Indianapolis, IN
,
Aug. 19–22
, American Institute of Aeronautics and Astronautics, Reston, VA.
7.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2016
, “
Effect of High Freestream Turbulence on Flowfields of Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
138
(
9
), p.
091001
.
8.
Mhetras
,
S.
,
Han
,
J.-C.
, and
Rudolph
,
R.
,
2012
, “
Effect of Flow Parameter Variations on Full Coverage Film-Cooling Effectiveness for a Gas Turbine Blade
,”
ASME J. Turbomach.
,
134
(
1
), p.
011004
.
9.
Wang
,
C.
,
Zhang
,
J.
,
Feng
,
H.
, and
Huang
,
Y.
,
2018
, “
Large Eddy Simulation of Film Cooling Flow From a Fanshaped Hole
,”
Appl. Therm. Eng.
,
129
, pp.
855
870
.
10.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
549
556
.
11.
Makki
,
Y.
, and
Jakubowski
,
G.
,
1986
, “
An Experimental Study of Film Cooling From Diffused Trapezoidal Shaped Holes
,”
4th Thermophysics and Heat Transfer Conference
,
Boston, MA
,
June 2–4
, American Institute of Aeronautics and Astronautics, Reston, VA, pp.
1
10
.
12.
Bergeles
,
G.
,
Gosman
,
A. D.
, and
Launder
,
B. E.
,
1977
, “
Near-Field Character of a Jet Discharged Through a Wall at 30 Deg to a Mainstream
,”
AIAA J.
,
15
(
4
), pp.
499
504
.
13.
Wright
,
L. M.
,
McClain
,
S. T.
, and
Clemenson
,
M. D.
,
2011
, “
Effect of Density Ratio on Flat Plate Film Cooling With Shaped Holes Using PSP
,”
ASME J. Turbomach.
,
133
(
4
), p.
041011
.
14.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Free-Stream Effects on the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061007
.
15.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061008
.
16.
Haven
,
B. A.
, and
Kurosaka
,
M.
,
1997
, “
Kidney and Anti-Kidney Vortices in Crossflow Jets
,”
J. Fluid Mech.
,
352
, pp.
27
64
.
17.
Choi
,
D. W.
,
Lee
,
K. D.
, and
Kim
,
K. Y.
,
2013
, “
Analysis and Optimization of Double-Jet Film-Cooling Holes
,”
J. Thermophys. Heat Transfer
,
27
(
2
), pp.
246
254
.
18.
Haydt
,
S.
, and
Lynch
,
S.
,
2019
, “
Cooling Effectiveness for a Shaped Film Cooling Hole at a Range of Compound Angles
,”
ASME J. Turbomach.
,
141
(
4
), p.
041005
.
19.
Singh
,
K.
,
Premachandran
,
B.
, and
Ravi
,
M. R.
,
2017
, “
Experimental and Numerical Studies on Film Cooling With Reverse/Backward Coolant Injection
,”
Int. J. Therm. Sci.
,
111
, pp.
390
408
.
20.
Leylek
,
J. H.
, and
Zerkle
,
R. D.
,
1994
, “
Discrete-Jet Film Cooling: A Comparison of Computational Results With Experiments
,”
ASME J. Turbomach.
,
116
(
3
), pp.
358
368
.
21.
Oliver
,
T. A.
,
Bogard
,
D. G.
, and
Moser
,
R. D.
,
2019
, “
Large Eddy Simulation of Compressible, Shaped-Hole Film Cooling
,”
Int. J. Heat Mass Transfer
,
140
, pp.
498
517
.
22.
Li
,
H. M.
,
Ghaly
,
W.
, and
Hassan
,
I.
,
2016
, “
The Formation of Counter-Rotating Vortex Pair and the Nature of Lift-Off Reattachment in Film-Cooling Flow
,”
Fluids
,
1
(
4
), pp.
1
21
.
23.
Li
,
W.
,
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2017
, “
Large Eddy Simulation of Compound Angle Hole Film Cooling With Hole Length-to-Diameter Ratio and Internal Crossflow Orientation Effects
,”
Int. J. Therm. Sci.
,
121
, pp.
410
423
.
24.
Johnson
,
P. L.
, and
Kapat
,
J. S.
,
2013
, “
Large-Eddy Simulations of a Cylindrical Film Cooling Hole
,”
J. Thermophys. Heat Transfer
,
27
(
2
), pp.
255
273
.
25.
Su
,
H.
,
Pu
,
J.
,
Wang
,
J. H.
,
Yuan
,
R. M.
,
Luan
,
Y. X.
, and
Kang
,
B. P.
,
2018
, “
An Experimental Investigation of Cooling Characteristics at a Vane End-Wall With a Locally Enhanced Hole-Layout
,”
Exp. Therm. Fluid Sci.
,
96
(
Jan.
), pp.
137
145
.
26.
Dhungel
,
A.
,
Lu
,
Y.
,
Phillips
,
W.
,
Ekkad
,
S. V.
, and
Heidmann
,
J.
,
2009
, “
Film Cooling From a Row of Holes Supplemented With Antivortex Holes
,”
ASME J. Turbomach.
,
131
(
2
), p.
021007
.
27.
Heidmann
,
J. D.
,
2008
, “
A Numerical Study of Anti-Vortex Film Cooling Designs at High Blowing Ratio
,”
ASME Turbo Expo 2008: Power for Land, Sea, and Air
,
Berlin, Germany
,
June 9–13
, pp.
789
799
, Paper No. GT2008-50845.
28.
Kalghatgi
,
P.
, and
Acharya
,
S.
,
2015
, “
Improved Film Cooling Effectiveness With a Round Film Cooling Hole Embedded in a Contoured Crater
,”
ASME J. Turbomach.
,
137
(
10
), p.
101006
.
29.
Zhang
,
J. Z.
,
Zhu
,
X. D.
,
Huang
,
Y.
, and
Wang
,
C. H.
,
2017
, “
Investigation on Film Cooling Performance From a Row of Round-to-Slot Holes on Flat Plate
,”
Int. J. Therm. Sci.
,
118
, pp.
207
225
.
30.
Miao
,
J. M.
, and
Wu
,
C. Y.
,
2006
, “
Numerical Approach to Hole Shape Effect on Film Cooling Effectiveness Over Flat Plate Including Internal Impingement Cooling Chamber
,”
Int. J. Heat Mass Transfer
,
49
(
5–6
), pp.
919
938
.
31.
Fu
,
W. S.
,
Chao
,
W. S.
,
Tsubokura
,
M.
,
Li
,
C. G.
, and
Wang
,
W. H.
,
2018
, “
Direct Numerical Simulation of Film Cooling With a Fan-Shaped Hole Under Low Reynolds Number Conditions
,”
Int. J. Heat Mass Transfer
,
123
, pp.
544
560
.
32.
Rao
,
P. M.
,
Biswal
,
P.
, and
Prasad
,
B. V.
,
2018
, “
A Computational Study of Mist Assisted Film Cooling
,”
Int. Commun. Heat Mass Transfer
,
95
, pp.
33
41
.
33.
Tyagi
,
M.
, and
Acharya
,
S.
,
2003
, “
Large Eddy Simulation of Film Cooling Flow From an Inclined Cylindrical Jet
,”
ASME J. Turbomach.
,
125
(
4
), pp.
734
742
.
34.
Ragab
,
R.
, and
Wang
,
T.
,
2018
, “
An Experimental Study of Mist/Air Film Cooling With Fan-Shaped Holes on an Extended Flat Plate—Part 1: Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
4
), p.
042201
.
35.
Zhao
,
L.
, and
Wang
,
T.
,
2014
, “
An Experimental Study of Mist/Air Film Cooling on a Flat Plate With Application to Gas Turbine Airfoils-Part I: Heat Transfer
,”
ASME J. Turbomach.
,
136
(
7
), p.
071006
.
36.
Haven
,
B. A.
,
Yamagata
,
D. K.
,
Kurosaka
,
M.
,
Yamawaki
,
S.
, and
Maya
,
T.
,
1997
, “
Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness
,”
Proceedings of ASME Turbo Expo
,
Orlando, FL
,
June 2–5
, p.
V003T09A007
, Paper No: 97-GT-045.
37.
Sarkar
,
S.
, and
Ranakoti
,
G.
,
2017
, “
Effect of Vortex Generators on Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
139
(
6
), p.
61009
.
38.
Singh
,
K.
,
Premachandran
,
B.
, and
Ravi
,
M. R.
,
2016
, “
Experimental Assessment of Film Cooling Performance of Short Cylindrical Holes on a Flat Surface
,”
Heat Mass Transfer
,
52
(
12
), pp.
2849
2862
.
39.
Colban
,
W.
,
Thole
,
K. A.
, and
Haendler
,
M.
,
2008
, “
A Comparison of Cylindrical and Fan-Shaped Film-Cooling Holes on a Vane Endwall at Low and High Freestream Turbulence Levels
,”
ASME J. Turbomach.
,
130
(
3
), p.
031007
.
40.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Zess
,
G.
,
2003
, “
Combustor Turbine Interface Studies-Part 1: Endwall Effectiveness Measurements
,”
ASME J. Turbomach.
,
125
(
2
), pp.
193
203
.
41.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Bogard
,
D.
,
2011
, “
A Film-Cooling Correlation for Shaped Holes on a Flat-Plate Surface
,”
ASME J. Turbomach.
,
133
(
1
), p.
011002
.
42.
Wang
,
W.
,
Tao
,
G.
,
Ke
,
D.
,
Luo
,
J.
, and
Cui
,
J.
,
2023
, “
Transpiration Cooling of High-Pressure Turbine Vane With Optimized Porosity Distribution
,”
Appl. Therm. Eng.
,
223
, p.
119831
.
You do not currently have access to this content.