Abstract

A solar air heater duct with W-shaped rib-turbulators on the collector plate disrupts the flow that enhances the heat transfer from the hot surface due to turbulence in the flow. In this analysis, a three-dimensional fluid domain of the W-shaped ribbed triangular solar air heater duct is numerically simulated to analyze the impact of roughness and flow parameters on thermo-fluidic performance; also, the turbulence behavior near the rib surfaces is presented. Roughness variables like non-dimensional pitch and non-dimensional height varied from 6.23 to 17.85 and 0.04 to 0.053, respectively. In contrast, the flow parameter, like the Reynolds number, is kept in the range of 4×103 to 18×103. A maximal performance evaluation criterion of 1.51 is attained for the W-shape ribs with a non-dimensional pitch of 7.14 and a non-dimensional height of 0.047 at a Reynolds number of 15×103. For the W-shaped rib-turbulators with a non-dimensional pitch of 7.14 and a non-dimensional height of 0.047 at a Reynolds number of 15×103, the maximum heat transfer is found to be 1.826 times that of a smooth duct. Accordingly, in the parametric range, the maximum friction penalty is 2.63 times that of a smooth duct. Some useful correlations are established considering the computational data.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Mund
,
C.
,
Rathore
,
S. K.
, and
Sahoo
,
R. K.
,
2021
, “
A Review of Solar Air Collectors About Various Modifications for Performance Enhancement
,”
Sol. Energy
,
228
, pp.
140
167
.
2.
Mahanand
,
Y.
, and
Senapati
,
J. R.
,
2022
, “
Implementation of Hybrid Rib-Turbulators on the Thermal Performance of Solar Air Heater Duct: A Collective Review
,”
Sustain. Energy Technol. Assess.
,
52
(
PD
), p.
102345
.
3.
Kumar
,
S.
,
Das
,
R. K.
, and
Kulkarni
,
K.
,
2022
, “
Comparative Study of Solar Air Heater (SAH) Roughened With Transverse Ribs of NACA 0020 in Forward and Reverse Direction
,”
Case Stud. Therm. Eng.
,
34
, p.
102015
.
4.
Varun Kumar
,
B.
,
Manikandan
,
G.
, and
Rajesh Kanna
,
P.
,
2021
, “
Enhancement of Heat Transfer in SAH With Polygonal and Trapezoidal Shape of the Rib Using CFD
,”
Energy
,
234
, p.
121154
.
5.
Nidhul
,
K.
,
Yadav
,
A. K.
,
Anish
,
S.
, and
Arunachala
,
U. C.
,
2022
, “
Thermo-Hydraulic and Exergetic Performance of a Cost-Effective Solar Air Heater: CFD and Experimental Study
,”
Renew. Energy
,
184
, pp.
627
641
.
6.
Manjunath
,
M. S.
,
Karanth
,
K. V.
, and
Sharma
,
N. Y.
,
2017
, “
Numerical Analysis of the Influence of Spherical Turbulence Generators on Heat Transfer Enhancement of Flat Plate Solar Air Heater
,”
Energy
,
121
, pp.
616
630
.
7.
Barik
,
A. K.
,
Mohanty
,
A.
,
Senapati
,
J. R.
, and
Awad
,
M. M.
,
2021
, “
Constructal Design of Different Ribs for Thermo-Fluid Performance Enhancement of a Solar Air Heater (SAH)
,”
Int. J. Therm. Sci.
,
160
(
June 2020
), p.
106655
.
8.
Choi
,
H. U.
, and
Choi
,
K. H.
,
2020
, “
CFD Analysis on the Heat Transfer and Fluid Flow of Solar Air Heater Having Transverse Triangular Block at the Bottom of Air Duct
,”
Energies
,
13
(
5
), p.
1099
.
9.
Rathor
,
Y.
, and
Aharwal
,
K. R.
,
2020
, “
Heat Transfer Enhancement Due to a Staggered Element Using Liquid Crystal Thermography in an Inclined Discrete Rib Roughened Solar Air Heater
,”
Int. Commun. Heat Mass Transf.
,
118
, p.
104839
.
10.
Kumar
,
R.
,
Goel
,
V.
,
Kumar
,
A.
,
Khurana
,
S.
,
Singh
,
P.
, and
Bopche
,
S. B.
,
2018
, “
Numerical Investigation of Heat Transfer and Friction Factor in Ribbed Triangular Duct Solar Air Heater Using Computational Fluid Dynamics (CFD)
,”
J. Mech. Sci. Technol.
,
32
(
1
), pp.
399
404
.
11.
Kumar
,
R.
,
Geol
,
V.
, and
Kumar
,
A.
,
2017
, “
A Parametric Study of the 2D Model of Solar Air Heater With Elliptical Rib Roughness Using CFD
,”
J. Mech. Sci. Technol.
,
31
(
2
), pp.
959
964
.
12.
Bharadwaj
,
G.
,
Varun Kumar
,
R.
, and
Sharma
,
A.
,
2017
, “
Heat Transfer Augmentation and Flow Characteristics in Ribbed Triangular Duct Solar Air Heater: An Experimental Analysis
,”
Int. J. Green Energy
,
14
(
7
), pp.
587
598
.
13.
Goel
,
V.
,
Kumar
,
R.
,
Bhattacharyya
,
S.
,
Tyagi
,
V. V.
, and
Abusorrah
,
A. M.
,
2021
, “
A Comprehensive Parametric Investigation of Hemispherical Cavities on Thermal Performance and Flow-Dynamics in the Triangular-Duct Solar-Assisted Air-Heater
,”
Renew. Energy
,
173
, pp.
896
912
.
14.
Souayeh
,
B.
,
Bhattacharyya
,
S.
,
Hdhiri
,
N.
, and
Hammami
,
F.
,
2021
, “
Numerical Investigation on Heat Transfer Augmentation in a Triangular Solar Air Heater Tube Fitted With Angular-Cut Varied-Length Twisted Tape
,”
Eur. Phys. J. Plus
,
136
(
6
), p.
643
.
15.
Shaik
,
R.
,
Punna
,
E.
, and
Gugulothu
,
S. K.
,
2023
, “
Optimisation of Thermohydraulic Performance of Triangular Duct Solar Air Heater With Alternative Dimple Shaped Protrusion and Intrusion on the Absorber Plate
,”
Therm. Sci. Eng. Prog.
,
42
, p.
101957
.
16.
Kumar
,
R.
, and
Verma
,
S. K.
,
2022
, “
Performance Estimation of Triangular Solar Air Heater Roughened Absorber Surface: An Experimental and Simulation Modeling
,”
Sustain. Energy Technol. Assess.
,
52
, p.
102208
.
17.
Kumar
,
R.
,
Kumar
,
A.
, and
Goel
,
V.
,
2019
, “
Performance Improvement and Development of Correlation for Friction Factor and Heat Transfer Using Computational Fluid Dynamics for Ribbed Triangular Duct Solar Air Heater
,”
Renew. Energy
,
131
, pp.
788
799
.
18.
Mahanand
,
Y.
, and
Senapati
,
J. R.
,
2022
, “
Thermo-Fluid Analysis of a Pentagonal Ribbed Triangular Solar Air Heater Duct (TSAHD): A Three-Dimensional Numerical Investigation
,”
Int. Commun. Heat Mass Transf.
,
137
, p.
106258
.
19.
Kumar
,
R.
,
Kumar
,
A.
, and
Varun
,
2017
, “
Computational Fluid Dynamics Based Study for Analyzing Heat Transfer and Friction Factor in Semi-Circular Rib-Roughened Equilateral Triangular Duct
,”
Int. J. Numer. Methods Heat Fluid Flow
,
27
(
4
), pp.
941
957
.
20.
Senapati
,
J. R.
,
Dash
,
S. K.
, and
Roy
,
S.
,
2017
, “
Entropy Generation in Laminar and Turbulent Natural Convection Heat Transfer From Vertical Cylinder With Annular Fins
,”
ASME J. Heat Transfer
,
139
(
4
), p.
042501
.
21.
Patankar
,
S. V.
,
Numerical Heat Transfer and Fluid Flow
,
Hemesphere
,
New York
.
22.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1985
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Int. Commun. Heat Mass Transf.
,
12
(
1
), pp.
3
22
.
23.
Pritchard
,
P. J.
, and
Leylegianm
,
J. C.
,
2010
,
Introduction to Fluid Mechanics
,
John Wiley & Sons
,
New York
.
24.
Webb
,
R. L.
, and
Eckert
,
E. R. G.
,
1972
, “
Application of Rough Surfaces to Heat Exchanger Design
,”
Int. J. Heat Mass Transf.
,
15
(
9
), pp.
1647
1658
.
25.
Mahanand
,
Y.
, and
Senapati
,
J. R.
,
2021
, “
Thermo-Hydraulic Performance Analysis of a Solar Air Heater (SAH) With Quarter-Circular Ribs on the Absorber Plate: A Comparative Study
,”
Int. J. Therm. Sci.
,
161
(
November 2020
), p.
106747
.
26.
Taler
,
D.
,
2016
, “
Determining Velocity and Friction Factor for Turbulent Flow in Smooth Tubes
,”
Int. J. Therm. Sci.
,
105
, pp.
109
122
.
27.
Yadav
,
A. S.
, and
Bhagoria
,
J. L.
,
2014
, “
A CFD Based Thermo-Hydraulic Performance Analysis of an Artificially Roughened Solar Air Heater Having Equilateral Triangular Sectioned Rib Roughness on the Absorber Plate
,”
Int. J. Heat Mass Transf.
,
70
, pp.
1016
1039
.
28.
Yadav
,
A. S.
, and
Bhagoria
,
J. L.
,
2013
, “
A CFD (Computational Fluid Dynamics) Based Heat Transfer and Fluid Flow Analysis of a Solar Air Heater Provided With Circular Transverse Wire Rib Roughness on the Absorber Plate
,”
Energy
,
55
,
1127
1142
.
29.
Gawande
,
V. B.
,
Dhoble
,
A. S.
,
Zodpe
,
D. B.
, and
Chamoli
,
S.
,
2016
, “
Experimental and CFD Investigation of Convection Heat Transfer in Solar Air Heater With Reverse L-Shaped Ribs
,”
Sol. Energy
,
131
, pp.
275
295
.
You do not currently have access to this content.