Abstract
The implementation of direct steam generation in linear concentrators is limited mainly by the complexity and the high demand for computational resources of the models developed to predict the installation behavior. With this in mind, we introduce an innovative methodology to characterize the thermo-hydraulic behavior of direct steam generation in parabolic trough solar collectors, with a strong focus on two-phase flow phenomena. Our proposed approach has resulted in a generalized function that eliminates the need for the convective coefficient and enables accurate prediction of the flow pattern within the receiver. By comparing our model with experimental data from the literature, we achieved relative squared errors (RSEs) values of less than 3% for temperature and pressure calculations, thus validating the robustness of our methodology. The Taitel and Dukler diagram confirms an appropriate flow pattern, while intermittent flow is observed initially during boiling; the pressure drop, although slightly elevated compared to direct solar steam (DISS) loop results, remains within acceptable limits; and the model demonstrates suitability for assessing liquid water, phase change, and superheated steam temperature evolution along the loop. Moreover, we further showcased the practical application of our developed model by applying it to a specific case study conducted in Agua Prieta, Sonora (Northwest México). The validated model exhibits versatility and is applicable to various cases, including both concentrating systems for electricity production and solar heat for industrial processes.