Abstract

The implementation of direct steam generation in linear concentrators is limited mainly by the complexity and the high demand for computational resources of the models developed to predict the installation behavior. With this in mind, we introduce an innovative methodology to characterize the thermo-hydraulic behavior of direct steam generation in parabolic trough solar collectors, with a strong focus on two-phase flow phenomena. Our proposed approach has resulted in a generalized function that eliminates the need for the convective coefficient h and enables accurate prediction of the flow pattern within the receiver. By comparing our model with experimental data from the literature, we achieved relative squared errors (RSEs) values of less than 3% for temperature and pressure calculations, thus validating the robustness of our methodology. The Taitel and Dukler diagram confirms an appropriate flow pattern, while intermittent flow is observed initially during boiling; the pressure drop, although slightly elevated compared to direct solar steam (DISS) loop results, remains within acceptable limits; and the model demonstrates suitability for assessing liquid water, phase change, and superheated steam temperature evolution along the loop. Moreover, we further showcased the practical application of our developed model by applying it to a specific case study conducted in Agua Prieta, Sonora (Northwest México). The validated model exhibits versatility and is applicable to various cases, including both concentrating systems for electricity production and solar heat for industrial processes.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Arvizu
,
D.
,
Balaya
,
P.
,
Cabeza
,
L.
,
Hollands
,
T.
,
Jäger-Waldau
,
A.
,
Kondo
,
M.
,
Konseibo
,
C.
, et al.,
2011
, “Direct Solar Energy,”
IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation
,
O.
Edenhofer
,
R.
Pichs-Madruga
,
Y.
Sokona
,
K.
Seyboth
,
P.
Matschoss
,
S.
Kadner
, and
T.
Zwickel
, eds.,
Cambridge University Press
,
Cambridge, UK
, pp.
333
400
.
2.
Bošnjaković
,
M.
, and
Tadijanović
,
V.
,
2019
, “
Environment Impact of a Concentrated Solar Power Plant
,”
Tehnički Glasnik
,
13
(
1
), pp.
68
74
.
3.
Caldés
,
N.
, and
Lechón
,
Y.
,
2021
, “Socio-Economic and Environmental Assessment of Concentrating Solar Power Systems,”
Concentrating Solar Power Technology
, 2nd ed.,
Woodhead Publishing
,
Duxford, UK
, pp.
127
162
.
4.
González-Mora
,
E.
,
Poudel
,
R.
, and
Durán-García
,
M. D.
,
2023
, “
A Practical Upper-Bound Efficiency Model for Solar Power Plants
,”
J. Non-Equilibr. Thermodyn.
,
48
(
3
), pp.
331
344
.
5.
Moya
,
E. Z.
,
2021
, “Chapter 7—Parabolic-Trough Concentrating Solar Power Systems,”
Concentrating Solar Power Technology
, 2nd ed.,
Woodhead Publishing
,
Duxford, UK
, pp.
219
266
.
6.
Giglio
,
A.
,
Lanzini
,
A.
,
Leone
,
P.
,
Rodríguez García
,
M. M.
, and
Zarza Moya
,
E.
,
2017
, “
Direct Steam Generation in Parabolic-Trough Collectors: A Review About the Technology and a Thermo-economic Analysis of a Hybrid System
,”
Renew. Sustain. Energy Rev.
,
74
(
1
), pp.
453
473
.
7.
Hakkarainen
,
E.
, and
Kannari
,
L.
,
2015
, “
Dynamic Modelling of Concentrated Solar Field for Thermal Energy Storage Integration
,” 9th International Renewable Energy Storage Conference (IRES 2015), Mar. 9–11,
Düsseldorf
, pp
1
12
.
8.
Zarza Moya
,
E.
,
2017
, “Chapter 5—Innovative Working Fluids for Parabolic Trough Collectors,”
Advances in Concentrating Solar Thermal Research and Technology
,
Woodhead Publishing
,
Duxford
, pp.
75
106
.
9.
Alobaid
,
F.
,
2018
, “
Process Simulation
,”
Numerical Simulation for Next Generation Thermal Power Plants
,
F.
Alobaid
, ed.,
Springer
,
Cham
, pp.
15
86
.
10.
Hewitt
,
G. F.
,
1998
, “Boiling,”
Handbook of Heat Transfer
, 3rd ed.,
W. M.
Rohsenow
,
J. P.
Hartnett
, and
Y. I.
Cho
, eds.,
McGraw-Hill Education
,
New York
, p.
1500
.
11.
Almanza
,
R.
,
Lentz
,
A.
, and
Jiménez
,
G.
,
1997
, “
Receiver Behavior in Direct Steam Generation With Parabolic Troughs
,”
Sol. Energy
,
61
(
4
), pp.
275
278
.
12.
Almanza
,
R.
, and
Lentz
,
A.
,
1998
, “
Electricity Production at Low Powers by Direct Steam Generation With Parabolic Troughs
,”
Sol. Energy
,
64
(
1
), pp.
115
120
.
13.
Eck
,
M.
, and
Steinmann
,
W.-D.
,
2002
, “
Direct Steam Generation in Parabolic Troughs: First Results of the DISS Project
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
134
139
.
14.
Eck
,
M.
,
Zarza
,
E.
,
Eickhoff
,
M.
,
Rheinländer
,
J.
, and
Valenzuela
,
L.
,
2003
, “
Applied Research Concerning the Direct Steam Generation in Parabolic Troughs
,”
Sol. Energy
,
74
(
4
), pp.
341
351
.
15.
Zarza Moya
,
E.
,
2003
, “Generación Directa De Vapor Con Colectores Solares Cilindro ParabóLicos. Proyecto Direct Solar Steam (DISS),” Ph.D. thesis, Universidad de Sevilla, Sevilla, Spain, http://www.tdx.cat/handle/10803/114351
16.
Silva
,
R.
,
Pérez
,
M.
, and
Fernández-Garcia
,
A.
,
2013
, “
Modeling and Co-simulation of a Parabolic Trough Solar Plant for Industrial Process Heat
,”
Appl. Energy
,
106
(
1
), pp.
287
300
.
17.
Lobón
,
D. H.
,
Baglietto
,
E.
,
Valenzuela
,
L.
, and
Zarza
,
E.
,
2014
, “
Modeling Direct Steam Generation in Solar Collectors With Multiphase CFD
,”
Appl. Energy
,
113
(
1
), pp.
1338
1348
.
18.
Serrano-Aguilera
,
J. J.
,
Valenzuela
,
L.
, and
Parras
,
L.
,
2014
, “
Thermal 3D Model for Direct Solar Steam Generation Under Superheated Conditions
,”
Appl. Energy
,
132
(
1
), pp.
370
382
.
19.
Xu
,
R.
, and
Wiesner
,
T. F.
,
2015
, “
Closed-Form Modeling of Direct Steam Generation in a Parabolic Trough Solar Receiver
,”
Energy
,
79
(
1
), pp.
163
176
.
20.
Chiarappa
,
T.
,
2015
, “
Performance of Direct Steam Generator Solar Receiver: Laboratory Vs Real Plant
,”
Energy Procedia
,
69
(
1
), pp.
328
339
.
21.
Sun
,
J.
,
Liu
,
Q.
, and
Hong
,
H.
,
2015
, “
Numerical Study of Parabolic-Trough Direct Steam Generation Loop in Recirculation Mode: Characteristics, Performance and General Operation Strategy
,”
Energy Convers. Manage.
,
96
(
1
), pp.
287
302
.
22.
Elsafi
,
A. M.
,
2015
, “
On Thermo-hydraulic Modeling of Direct Steam Generation
,”
Sol. Energy
,
120
(
1
), pp.
636
650
.
23.
Guo
,
S.
,
Liu
,
D.
,
Chu
,
Y.
,
Chen
,
X.
,
Shen
,
B.
,
Xu
,
C.
,
Zhou
,
L.
, and
Wang
,
P.
,
2016
, “
Real-Time Dynamic Analysis for Complete Loop of Direct Steam Generation Solar Trough Collector
,”
Energy Convers. Manage.
,
126
(
1
), pp.
573
580
.
24.
Li
,
L.
,
Sun
,
J.
, and
Li
,
Y.
,
2017
, “
Prospective Fully-Coupled Multi-level Analytical Methodology for Concentrated Solar Power Plants: General Modelling
,”
Appl. Therm. Eng.
,
118
(
1
), pp.
171
187
.
25.
Serrano-Aguilera
,
J.
,
Valenzuela
,
L.
, and
Parras
,
L.
,
2017
, “
Thermal Hydraulic RELAP5 Model for a Solar Direct Steam Generation System Based on Parabolic Trough Collectors Operating in Once-Through Mode
,”
Energy
,
133
(
1
), pp.
796
807
.
26.
Nisha
,
S.
,
Pal
,
R. K.
, and
Kumar
,
K. R.
,
2019
, “
Direct Steam Generation in Parabolic Trough Solar Collector: Analytical Modelling for Prediction of Flow Pattern
,” AIP Conference Proceedings, Vol. 2091, Dec. 4–6,
AIP Publishing LLC
,
Guwahati
, p.
020006
.
27.
Pal
,
R. K.
, and
Kumar
,
K. R.
,
2022
, “
Effect of Transient Concentrated Solar Flux Profile on the Absorber Surface for Direct Steam Generation in the Parabolic Trough Solar Collector
,”
Renew. Energy
,
186
(
1
), pp.
226
249
.
28.
Islam
,
M. T.
,
Huda
,
N.
,
Abdullah
,
A. B.
, and
Saidur
,
R.
,
2018
, “
A Comprehensive Review of State-of-the-Art Concentrating Solar Power (CSP) Technologies: Current Status and Research Trends
,”
Renew. Sustain. Energy Rev.
,
91
(
1
), pp.
987
1018
.
29.
Sandá
,
A.
,
Moya
,
S. L.
, and
Valenzuela
,
L.
,
2019
, “
Modelling and Simulation Tools for Direct Steam Generation in Parabolic-Trough Solar Collectors: A Review
,”
Renew. Sustain. Energy Rev.
,
113
(
1
), p.
109226
.
30.
Pal
,
R. K.
, and
Ravi Kumar
,
K.
,
2021
, “
Thermo-Hydrodynamic Modeling of Direct Steam Generation in Parabolic Trough Solar Collector
,” Proceedings of the 7th International Conference on Advances in Energy Research,
M.
Bose
, and
A.
Modi
, eds., Dec. 10–12,
Springer Singapore
,
Bombay
, pp.
131
140
.
31.
Hachicha
,
A. A.
,
Rodríguez
,
I.
, and
Ghenai
,
C.
,
2018
, “
Thermo-Hydraulic Analysis and Numerical Simulation of a Parabolic Trough Solar Collector for Direct Steam Generation
,”
Appl. Energy
,
214
(
1
), pp.
152
165
.
32.
Hewitt
,
G. F.
,
Shires
,
G. L.
, and
Bott
,
T.
,
1994
,
Process Heat Transfer
,
Begell House
,
London
.
33.
Kreith
,
F.
, and
Manglik
,
R. M.
,
2016
,
Principles of Heat Transfer
,
Cengage Learning
,
Boston, MA
.
34.
Naterer
,
G.
,
2021
,
Advanced Heat Transfer
,
CRC Press
,
Boca Raton, FL
.
35.
Bejan
,
A.
,
2022
,
Heat Transfer: Evolution, Design and Performance
,
John Wiley & Sons
,
Hoboken, NJ
.
36.
Adiutori
,
E.
,
2017
,
The New Engineering
, 3rd ed.,
Ventuno Press
,
Naples, FL
.
37.
González-Mora
,
E.
, and
Duran García
,
M. D.
,
2022
, “
Propuesta De Eliminación Del Coeficiente Convectivo h Para El Modelado De Flujo Bifásico En Concentradores Parabólicos
,” XVIII Congreso Ibérico y XIV Congreso Iberoamericano de Energía Solar, Jun. 20–22,
Mallorca
, pp.
105
112
.
38.
Gonzalez-Mora
,
E.
, and
Durán-García
,
M. D.
,
2022
, “
Validation of an Alternative Methodology for Direct Steam Generation Modelling in Parabolic Collectors
,” Proceedings of EuroSun 2022—ISES and IEA SHC International Conference on Solar Energy for Buildings and Industry, Sept. 25–29,
International Solar Energy Society
,
Freiburg
, pp.
1
10
.
39.
González-Mora
,
E.
, and
Durán-García
,
M. D.
,
2023
, “
Alternative Methodology for Modeling Direct Steam Generation in Parabolic Collectors: A Study Case in Northeast Mexico
,” 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2023), Jun. 25–30,
Las Palmas De Gran Canaria
, pp.
1496
1506
.
40.
El Hefni
,
B.
, and
Bouskela
,
D.
,
2019
, “Introduction to Modeling and Simulation,”
Modeling and Simulation of Thermal Power Plants With Thermosyspro: A Theoretical Introduction and a Practical Guide
,
B.
El Hefni
and
D.
Bouskela
, eds.,
Springer International Publishing
,
Cham
, pp.
1
10
.
41.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2002
,
Transport Phenomena
, 2nd ed.,
John Wiley & Sons, Inc.
,
New York
.
42.
Forristall
,
R.
,
2003
, “Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver,” National Renewable Energy Laboratory, Golden, CO, https://www.nrel.gov/docs/fy04osti/34169.pdf
43.
Montes Pita
,
M. J.
,
2008
, “Análisis Y Propuestas De Sistemas Solares De Alta Exergía Que Emplean Agua Como Fluido Calorífero,” Ph.D. thesis, Universidad Politécnica de Madrid, Madrid.
44.
Vasquez Padilla
,
R.
,
2011
, “Simplified Methodology for Designing Parabolic Trough Solar Power Plants,” Ph.D. thesis, University of South Florida, Florida, https://scholarcommons.usf.edu/etd/3390
45.
Tagle Salazar
,
P. D.
,
2018
, “Thermo-Hydraulic Performance Modeling of Thermal Energy Systems Using Parabolic Trough Solar Collectors,” Ph.D. thesis, Instituto Tecnológico Y De Estudios Superiores De Monterrey, Monterrey, http://hdl.handle.net/11285/632662
46.
Abbas
,
R.
,
2015
, “Towards Cost Reduction in Concentrating Solar Power: Innovative Design for an Efficient Fresnel Based Solar Field,” Ph.D. thesis, Universidad Politécnica de Madrid, Madrid.
47.
González-Mora
,
E.
,
2019
, “Análisis 2E De Diferentes Configuraciones De Plantas Solares De Generación Directa De Vapor Empleando Reflectores Fresnel,” Master’s thesis, Universidad Autónoma Del Estado De México, Toluca.
48.
Özışık
,
M. N.
,
1973
,
Radiative Transfer and Interactions With Conduction and Convection
, 1st ed.,
Wiley
,
New York
.
49.
Howell
,
J. R.
,
Menguc
,
M. P.
, and
Siegel
,
R.
,
2015
,
Thermal Radiation Heat Transfer
, 6th ed., Vol. 92,
CRC Press
,
Boca Raton, FL
.
50.
Rabl
,
A.
,
1985
,
Active Solar Collectors and Their Applications
,
Oxford University Press
,
New York
.
51.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
John Wiley & Sons, Inc.
,
New York
.
52.
Tomei
,
G. L.
,
2015
,
Steam: Its Generation and Use
,
Babcock & Wilcox Company
,
Barberton
.
53.
Hewitt
,
G.
,
1998
, “Boiling,”
Handbook of Heat Transfer
, 3rd ed.,
W. M.
Rohsenow
,
J. P.
Hartnett
, and
Y. I.
Cho
, eds.,
McGraw-Hill Education
,
New York
, pp.
1
168
.
54.
Thome
,
J.
,
2003
, “Boiling,”
Heat Transfer Handbook
,
A.
Bejan
and
A. D.
Krauss
, eds.,
John Wiley & Sons, Inc.
,
Hoboken, NJ
, pp.
635
717
.
55.
Gungor
,
K.
, and
Winterton
,
R.
,
1986
, “
A General Correlation for Flow Boiling in Tubes and Annuli
,”
Int. J. Heat Mass Transfer
,
29
(
3
), pp.
351
358
.
56.
González-Mora
,
E.
, and
Durán-García
,
M. D.
,
2021
, “
Energy and Exergy (2E) Analysis of an Optimized Solar Field of Linear Fresnel Reflectors for a Conceptual Direct Steam Generation Power Plant
,”
Energies
,
14
(
14
), p.
4234
.
57.
Hirsch
,
T.
,
Feldhoff
,
J. F.
,
Hennecke
,
K.
, and
Pitz-Paal
,
R.
,
2014
, “
Advancements in the Field of Direct Steam Generation in Linear Solar Concentrators—A Review
,”
Heat Transfer Eng.
,
35
(
3
), pp.
258
271
.
58.
Feldhoff
,
J. F.
,
Hirsch
,
T.
,
Pitz-Paal
,
R.
, and
Valenzuela
,
L.
,
2016
, “
Analysis and Potential of Once-Through Steam Generators in Line Focus Systems—Final Results of the DUKE Project
,”
AIP Conf. Proc.
,
1734
(
1
), p.
100006
.
59.
Taitel
,
Y.
, and
Dukler
,
A. E.
,
1976
, “
A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas–Liquid Flow
,”
AIChE J.
,
22
(
1
), pp.
47
55
.
60.
Eck
,
M.
, and
Steinmann
,
W.-D.
,
2005
, “
Modelling and Design of Direct Solar Steam Generating Collector Fields
,”
ASME J. Sol. Energy Eng.
,
127
(
3
), pp.
371
380
.
61.
Kretzschmar
,
H.-J.
, and
Wagner
,
W.
,
2019
,
International Steam Tables
,
Springer
,
Berlin
.
62.
Cui
,
W.
,
Li
,
H.
,
Li
,
L.
, and
Liao
,
Q.
,
2013
, “
Thermal Stress Analysis of DSG Solar Absorber Tube in Stratified Two-Phase Regime
,”
AIP Conf. Proc.
,
1558
(
1
), pp.
2217
2220
.
63.
Khanna
,
S.
,
Kedare
,
S. B.
, and
Singh
,
S.
,
2014
, “
Deflection and Stresses in Absorber Tube of Solar Parabolic Trough Due to Circumferential and Axial Flux Variations on Absorber Tube Supported at Multiple Points
,”
Sol. Energy
,
99
(
1
), pp.
134
151
.
64.
Li
,
L.
,
Sun
,
J.
, and
Li
,
Y.
,
2017
, “
Thermal Load and Bending Analysis of Heat Collection Element of Direct-Steam-Generation Parabolic-Trough Solar Power Plant
,”
Appl. Therm. Eng.
,
127
(
1
), pp.
1530
1542
.
65.
Barnea
,
D.
,
1987
, “
A Unified Model for Predicting Flow-Pattern Transitions for the Whole Range of Pipe Inclinations
,”
Int. J. Multiphase Flow
,
13
(
1
), pp.
1
12
.
66.
Baker
,
O.
,
1953
, “
Design of Pipelines for the Simultaneous Flow of Oil and Gas
,” Fall Meeting of the Petroleum Branch of AIME, Oct. 19–21,
Dallas
, pp.
1
16
.
67.
Meteotest, 2018, “Meteonorm,” https://www.meteonorm.com/
68.
González-Mora
,
E.
, and
Durán-García
,
M. D.
,
2022
, “Approaching a LFR Direct Steam Generation Power Plant Towards an Endoreversible Heat EngineGas,”
Advanced Energy Technologies and Systems I
,
A.
Zaporozhets
ed.,
Springer International Publishing
,
Cham
, pp.
21
44
.
You do not currently have access to this content.