Abstract

A significant challenge of offering adequate film cooling for gas turbine hot components in practical operation is deposition induced by impurities from the intake air and fuel, which influences the overall cooling performance by changing the surface geometric and thermal conditions. In this study, an experimental and numerical combined methodology was used to evaluate the deposition effects on film cooling from a row of holes on conductive flat plates. Cylindrical holes with simple and compound holes that are extensively used in today's modern engines were investigated to assess the sensitivity of their overall cooling effectiveness to deposition for coolant injection ratios of 0.5–2.0. Flow physics and thermal fields were analyzed to better understand the coupling effects of film cooling with deposition and their interaction with solid walls. Furthermore, the isolated effects of deposition on adiabatic film cooling and heat transfer were examined, allowing for a better understanding of which factor dominates the resulting combined effects. Inspection of overall cooling effectiveness on the wall backside revealed that the deposition effects were strongly linked to coolant jet behaviors, which were determined by both the coolant injection ratio and the hole orientation angle. Quantitative comparisons showed that deposition decreased overall cooling effectiveness by 22% on the flat plate cooled by the compound-angled hole with the lowest blowing ratio of 0.5, while it increased overall cooling effectiveness from the simple hole by 38% at a higher blowing ratio of 1.5. The results reported for the current work provide guidance on how to choose orientation angles for film cooling design where deposition problems are accounted for.

References

1.
Cardwell
,
N. D.
,
Thole
,
K. A.
, and
Burd
,
S. W.
,
2010
, “
Investigation of Sand Blocking Within Impingement and Film-Cooling Holes
,”
ASME J. Turbomach.
,
132
(
2
), p.
021020
.
2.
Schneider
,
O.
,
Benra
,
F.-K.
,
Dohmen
,
H. J.
, and
Jarzombek
,
K.
,
2005
, “
A Contribution to the Abrasive Effect of Particles in a Gas Turbine Pre-Swirl Cooling Air System
,”
ASME Turbo Expo
, Paper No. GT2005-68188.
3.
Dunn
,
M. G.
,
2012
, “
Operation of Gas Turbine Engines in an Environment Contaminated With Volcanic Ash
,”
ASME J. Turbomach.
,
134
(
5
), p.
051001
.
4.
Bojdo
,
N.
, and
Filippone
,
A.
,
2014
, “
Effects of Desert Particulate Composition on Helicopter Engine Degradation Rate
,”
Proceedings of 40th European Rotorcraft Forum
,
Southampton, UK
,
Sept. 2–5
.
5.
Prenter
,
R.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2016
, “
Deposition on a Cooled Nozzle Guide Vane With Nonuniform Inlet Temperatures
,”
ASME J. Turbomach.
,
138
(
10
), p.
101005
.
6.
Yang
,
X.
,
Hao
,
Z. H.
, and
Feng
,
Z. P.
,
2021
, “
Variations of Cooling Performance on Turbine Vanes Due to Incipient Particle Deposition
,”
Proc. Inst. Mech. Eng. A: J. Power Energy
,
235
(
8
), pp.
1832
1846
.
7.
Bons
,
J. P.
,
Lo
,
C.
,
Nied
,
E.
, and
Han
,
J.
,
2022
, “
The Effect of Gas and Surface Temperature on Cold-Side and Hot-Side Turbine Deposition
,”
ASME J. Turbomach.
,
144
(
12
), p.
121013
.
8.
Jennions
,
I.
, and
Ali
,
F.
,
2023
, “
Evaluation of Component Level Degradation in the Boeing 737-800 Air Cycle Machine
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
3
), p.
031014
.
9.
Bons
,
J. P.
,
Taylor
,
R.
,
McClain
,
S.
, and
Rivir
,
R. B.
,
2001
, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
,
123
(
4
), pp.
739
748
.
10.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
,
Chiang
,
H. D.
, and
Elovic
,
E.
,
1985
, “
Effect of Surface Roughness on Film Cooling Performance
,”
ASME J. Eng. Gas Turbines Power
,
107
(
1
), pp.
111
116
.
11.
Demling
,
P.
, and
Bogard
,
D. G.
,
2006
, “
The Effects of Obstructions on Film Cooling Effectiveness on the Suction Side of a Gas Turbine Vane
,”
ASME Turbo Expo
, Paper No. GT2006-90577.
12.
Sundaram
,
N.
, and
Thole
,
K. A.
,
2007
, “
Effects of Surface Deposition, Hole Blockage, and Thermal Barrier Coating Spallation on Vane Endwall Film-Cooling
,”
ASME J. Turbomach.
,
129
(
3
), pp.
599
607
.
13.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
,
2006
, “
Effect of Midpassage Gap, Endwall Misalignment, and Roughness on Endwall Film-Cooling
,”
ASME J. Turbomach.
,
128
(
1
), pp.
62
70
.
14.
Lewis
,
S.
,
Barker
,
B.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T. H.
,
2011
, “
Film Cooling Effectiveness and Heat Transfer Near Deposit-Laden Film Holes
,”
ASME J. Turbomach.
,
133
(
3
), p.
031003
.
15.
Ai
,
W.
,
Murray
,
N.
,
Fletcher
,
T.
,
Harding
,
S.
,
Lewis
,
S.
, and
Bons
,
J. P.
,
2012
, “
Deposition Near Film Cooling Holes on a High Pressure Turbine Vane
,”
ASME J. Turbomach.
,
134
(
4
), p.
041013
.
16.
Webb
,
J.
,
Casaday
,
B.
,
Barker
,
B.
,
Bons
,
J. P.
,
Gledhill
,
A. D.
, and
Padture
,
N. P.
,
2013
, “
Coal Ash Deposition on Nozzle Guide Vanes—Part I: Experimental Characteristics of Four Coal Ash Types
,”
ASME J. Turbomach.
,
135
(
2
), p.
021033
.
17.
Yang
,
X.
,
Hao
,
Z.
, and
Feng
,
Z.
,
2024
, “
Experimental Assessment of Film Cooling From Cylindrical Holes Subject to Particulate Deposition
,”
Exp. Therm. Fluid Sci.
,
154
, p.
111155
.
18.
Bonilla
,
C.
,
Webb
,
J.
,
Clum
,
C.
,
Casaday
,
B.
,
Brewer
,
E.
, and
Bons
,
J. P.
,
2012
, “
The Effect of Particle Size and Film Cooling on Nozzle Guide Vane Deposition
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
101901
.
19.
Lawson
,
S. A.
, and
Thole
,
K. A.
,
2011
, “
Effects of Simulated Particle Deposition on Film Cooling
,”
ASME J. Turbomach.
,
133
(
2
), p.
021009
.
20.
Lawson
,
S. A.
,
Lynch
,
S. P.
, and
Thole
,
K. A.
,
2013
, “
Simulations of Multiphase Particle Deposition on a Nonaxisymmetric Contoured Endwall With Film-Cooling
,”
ASME J. Turbomach.
,
135
(
3
), p.
031032
.
21.
Lawson
,
S. A.
,
Thole
,
K. A.
,
Okita
,
Y.
, and
Nakamata
,
C.
,
2012
, “
Simulations of Multiphase Particle Deposition on a Showerhead With Staggered Film-Cooling Holes
,”
ASME J. Turbomach.
,
134
(
5
), p.
051041
.
22.
Yang
,
X.
,
Hao
,
Z.
, and
Feng
,
Z.
,
2021
, “
An Experimental Study on Turbine Vane Leading-Edge Film Cooling With Deposition
,”
Appl. Therm. Eng.
,
198
, p.
117447
.
23.
Lawson
,
S. A.
, and
Thole
,
K. A.
,
2012
, “
Simulations of Multiphase Particle Deposition on Endwall Film-Cooling Holes in Transverse Trenches
,”
ASME J. Turbomach.
,
134
(
5
), p.
051040
.
24.
Kistenmacher
,
D. A.
,
Todd Davidson
,
F.
, and
Bogard
,
D. G.
,
2014
, “
Realistic Trench Film Cooling With a Thermal Barrier Coating and Deposition
,”
ASME J. Turbomach.
,
136
(
9
), p.
091002
.
25.
Rutledge
,
J. L.
,
Robertson
,
D.
, and
Bogard
,
D. G.
,
2006
, “
Degradation of Film Cooling Performance on a Turbine Vane Suction Side Due to Surface Roughness
,”
ASME J. Turbomach.
,
128
(
3
), pp.
547
554
.
26.
Bowen
,
C. P.
, and
Bons
,
J. P.
,
2022
, “
Enhancing Turbine Deposition Prediction Capability With Conjugate Mesh Morphing
,”
ASME J. Turbomach.
,
144
(
6
), p.
061013
.
27.
Albert
,
J. E.
, and
Bogard
,
D. G.
,
2012
, “
Experimental Simulation of Contaminant Deposition on a Film Cooled Turbine Airfoil Leading Edge
,”
ASME J. Turbomach.
,
134
(
5
), p.
051014
.
28.
Yang
,
X.
,
Hao
,
Z.
,
Feng
,
Z. P.
,
Ligrani
,
P.
, and
Weigand
,
B.
,
2024
, “
Conjugate Heat Transfer Evaluation of Turbine Blade Leading-Edge Swirl and Jet Impingement Cooling With Particulate Deposition
,”
ASME J. Turbomach.
,
146
(
1
), p.
011003
.
29.
Yang
,
X.
,
Hao
,
Z.
, and
Feng
,
Z.
,
2025
, “
Experimental Characterization of Particulate Deposition on Turbine Vane Leading-Edge Models With Various Showerhead Cooling Geometries
,”
Int. J. Therm. Sci.
,
210
, p.
109595
.
30.
Maikell
,
J.
,
Bogard
,
D.
,
Piggush
,
J.
, and
Kohli
,
A.
,
2009
, “
Experimental Simulation of a Film Cooled Turbine Blade Leading Edge Including Thermal Barrier Coating Effects
,”
ASME J. Turbomach.
,
133
(
1
), p.
011014
.
31.
Richards
,
G. H.
,
Slater
,
P. N.
, and
Harb
,
J. N.
,
1993
, “
Simulation of Ash Deposit Growth in a Pulverized Coal-Fired Pilot Scale Reactor
,”
Energy Fuels
,
7
(
6
), pp.
774
781
.
32.
Moffat
,
R. J.
,
1985
, “
Uncertainty Analysis in the Planning of an Experiment
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
173
181
.
33.
Brach
,
R. M.
, and
Dunn
,
P. F.
,
1992
, “
A Mathematical Model of the Impact and Adhesion of Microspheres
,”
Aerosol Sci. Technol.
,
16
(
1
), pp.
51
64
.
34.
El-Batsh
,
H.
, and
Haselbacher
,
H.
,
2002
, “
Numerical Investigation of the Effect of Ash Particle Deposition on the Flow Field Through Turbine Cascades
,” ASME Paper No. GT2002-30600.
35.
Yang
,
X.
,
Liu
,
Z.
, and
Feng
,
Z. P.
,
2015
, “
Numerical Evaluation of Novel Shaped Holes for Enhancing Film Cooling Performance
,”
ASME J. Heat Transfer
,
137
(
7
), p.
071701
.
36.
Yang
,
X.
,
Liu
,
Z. S.
,
Zhao
,
Q.
,
Liu
,
Z.
,
Feng
,
Z. P.
, and
Simon
,
T. W.
,
2020
, “
Comparisons of Endwall Overall Effectiveness From Two Film Hole Distribution Patterns at Low and High Exit Mach Numbers
,”
ASME J. Turbomach.
,
142
(
10
), p.
101007
.
37.
Yang
,
X.
,
Zhao
,
Q.
, and
Feng
,
Z.
,
2021
, “
Investigation and Application of Bio-inspired Microscale Structures to Turbine Endwall for Enhancing Film Cooling Performance
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
6
), p.
061001
.
38.
Agati
,
G.
,
Borello
,
D.
,
Di Gruttola
,
F.
,
Simone
,
D.
,
Rispoli
,
F.
,
Castorrini
,
A.
,
Gabriele
,
S.
, and
Venturini
,
P.
,
2023
, “
Numerical Prediction of Long-Term Droplet Erosion and Washing Efficiency of an Axial Compressors Through the Use of a Discrete Mesh Morphing Approach
,”
ASME J. Turbomach.
,
145
(
3
), p.
031009
.
39.
Wang
,
H.
, and
Wright
,
L. M.
,
2023
, “
Coupling of Volumetric Flowfield and Surface Effectiveness Measurements for Flat-Plate Film Cooling With Cylindrical Holes Using Tomographic Particle Image Velocimetry and Pressure-Sensitive Paint
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
6
), p.
061008
.
You do not currently have access to this content.