Abstract

Fouling is a chronic problem in heat exchangers, and traditional analysis methods often require significant effort, making them time-consuming and impractical for industrial settings. This study uses aspen plus software to analyze fouling in a shell-and-tube heat exchanger that preheats feed for a distillation column. The objective of this study is to compare design, rating, and simulation modes to assess tube-side fouling, interactions between thermal and hydraulic analyses, and its impact on distillation column operations, including the cost increase due to fouling. Cases include a clean scenario, four with varying fouling resistances, and four with varying fouling layer thicknesses. The findings indicate that while design mode is informative, it is impractical for real-time analysis. Rating mode identifies potential malfunctions, but simulation mode proves superior by providing real-time data. Based on simulation results, the available heat duty decreases almost linearly with increasing fouling resistance, resulting in a maximum decrease of 31.25%. As the fouling resistance increased, the shell-side outlet temperature also rose from 69.17 °C to 75.75 °C, while the tube-side outlet temperature dropped from 60 °C to 49.35 °C. This prevented the heat exchanger from reaching the required inlet temperature for the distillation process, leading to an increase in reboiler duty. This study concludes that using the appropriate mode allows for addressing fouling with a simplified, reliable approach, even without historical plant data or the need to engage in complex mathematical methods.

References

1.
Shah
,
R. K.
, and
Sekulic
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
John Wiley & Sons
,
New Jersey
.
2.
Trafczynski
,
M.
,
Markowski
,
M.
, and
Urbaniec
,
K.
,
2023
, “
Energy Saving and Pollution Reduction Through Optimal Scheduling of Cleaning Actions in a Heat Exchanger Network
,”
Renewable Sustainable Energy Rev.
,
173
, p.
113072
.
3.
Markowski
,
M.
,
Trafczynski
,
M.
, and
Urbaniec
,
K.
,
2013
, “
Identification of the Influence of Fouling on the Heat Recovery in a Network of Shell and Tube Heat Exchangers
,”
Appl. Energy
,
102
, pp.
755
764
.
4.
Technical Committee
,
2019
,
Standards of the Tubular Exchanger Manufacturers Association
,
Tubular Exchanger Manufacturers Association
,
USA
.
5.
Müller-Steinhagen
,
H.
,
2011
, “
Heat Transfer Fouling: 50 Years After the Kern and Seaton Model
,”
Heat Transfer Eng.
,
32
(
1
), pp.
1
13
.
6.
Chambon
,
A.
,
Anxionnaz-Minvielle
,
Z.
,
Cwicklinski
,
G.
,
Guintrand
,
N.
,
Buffet
,
A.
, and
Vinet
,
B.
,
2020
, “
Shell-and-Tube Heat Exchanger Geometry Modification: An Efficient Way to Mitigate Fouling
,”
Heat Transfer Eng.
,
41
(
2
), pp.
170
177
.
7.
Quan
,
Z.
,
Chen
,
Y.
, and
Ma
,
C.
,
2008
, “
Experimental Study of Fouling on Heat Transfer Surface During Forced Convective Heat Transfer
,”
Chin. J. Chem. Eng.
,
16
(
4
), pp.
535
540
.
8.
Diaz-Bejarano
,
E.
,
Behranvand
,
E.
,
Coletti
,
F.
,
Mozdianfard
,
M. R.
, and
Macchietto
,
S.
,
2017
, “
Organic and Inorganic Fouling in Heat Exchangers—Industrial Case Study: Analysis of Fouling State
,”
Appl. Energy
,
206
, pp.
1250
1266
.
9.
Diaz-Bejarano
,
E.
,
Coletti
,
F.
, and
Macchietto
,
S.
,
2019
, “
Modeling and Prediction of Shell-Side Fouling in Shell-and-Tube Heat Exchangers
,”
Heat Transfer Eng.
,
40
(
11
), pp.
845
861
.
10.
Diaz-Bejarano
,
E.
,
Coletti
,
F.
, and
MacChietto
,
S.
,
2020
, “
A Model-Based Method for Visualization, Monitoring, and Diagnosis of Fouling in Heat Exchangers
,”
Ind. Eng. Chem. Res.
,
59
(
10
), pp.
4602
4619
.
11.
Díaz-Bejarano
,
E.
,
Coletti
,
F.
, and
Macchietto
,
S.
,
2016
, “
Model-Based Monitoring of Thermal-Hydraulic Performance of Refinery Heat Exchangers Undergoing Fouling
,”
Comput. Aided Chem. Eng.
,
38
, pp.
1911
1916
.
12.
Loyola-Fuentes
,
J.
,
Jobson
,
M.
, and
Smith
,
R.
,
2019
, “
Estimation of Fouling Model Parameters for Shell Side and Tube Side of Crude Oil Heat Exchangers Using Data Reconciliation and Parameter Estimation
,”
Ind. Eng. Chem. Res.
,
58
(
24
), pp.
10418
10436
.
13.
Loyola-Fuentes
,
J.
, and
Smith
,
R.
,
2020
, “
Classification and Estimation of Unmeasured Process Variables in Crude Oil Pre-Heat Trains Subject to Fouling Deposition
,”
Comput. Chem. Eng.
,
137
, p.
106779
.
14.
Coletti
,
F.
, and
Macchietto
,
S.
,
2011
, “
A Dynamic, Distributed Model of Shell-and-Tube Heat Exchangers Undergoing Crude Oil Fouling
,”
Ind. Eng. Chem. Res.
,
50
(
8
), pp.
4515
4533
.
15.
Wilson
,
D. I.
,
Polley
,
G. T.
, and
Pugh
,
S. J.
,
2005
, “
Ten Years of Ebert, Panchal, and the Threshold Fouling Concept
,”
Proceedings of Sixth International Conference on Heat Exchanger Fouling and Cleaning – Challenges and Opportunities
,
Kloster Irsee, Germany
,
June 5–10
, pp.
25
36
.
16.
Wilson
,
D. I.
,
Ishiyama
,
E. M.
, and
Polley
,
G. T.
,
2015
, “
Twenty Years of Ebert and Panchal - What Next?
Proceedings of International Conference on Heat Exchanger Fouling and Cleaning
,
Enfield, Dublin
,
June 7–12
.
17.
Markowski
,
M.
,
Trafczynski
,
M.
, and
Urbaniec
,
K.
,
2013
, “
Validation of the Method for Determination of the Thermal Resistance of Fouling in Shell and Tube Heat Exchangers
,”
Energy Convers. Manage.
,
76
, pp.
307
313
.
18.
Amini
,
M.
, and
Bazargan
,
M.
,
2014
, “
Two Objective Optimization in Shell-and-Tube Heat Exchangers Using Genetic Algorithm
,”
Appl. Therm. Eng.
,
69
(
1–2
), pp.
278
285
.
19.
Prieto
,
M. M.
,
Miranda
,
J.
, and
Sigales
,
B.
,
1999
, “
Application of a Stepwise Method for Analyzing Fouling in Shell-and-Tube Exchangers
,”
Heat Transfer Eng.
,
20
(
4
), pp.
19
26
.
20.
Li
,
X. L.
,
Wang
,
S. Q.
,
Yang
,
D. L.
,
Tang
,
G. H.
, and
Wang
,
Y. C.
,
2021
, “
Thermal-Hydraulic and Fouling Performances of Enhanced Double H-Type Finned Tubes for Residual Heat Recovery
,”
Appl. Therm. Eng.
,
189
, p.
116724
.
21.
Wang
,
F. L.
,
He
,
Y. L.
,
Tong
,
Z. X.
, and
Tang
,
S. Z.
,
2017
, “
Real-Time Fouling Characteristics of a Typical Heat Exchanger Used in the Waste Heat Recovery Systems
,”
Int. J. Heat Mass Transfer
,
104
, pp.
774
786
.
22.
Tang
,
S. Z.
,
Li
,
M. J.
,
Wang
,
F. L.
, and
Liu
,
Z. B.
,
2019
, “
Fouling and Thermal-Hydraulic Characteristics of Aligned Elliptical Tube and Honeycomb Circular Tube in Flue Gas Heat Exchangers
,”
Fuel
,
251
, pp.
316
327
.
23.
Feng
,
Z.
,
Xin
,
C.
,
Zhou
,
T.
,
Zhang
,
J.
, and
Fu
,
T.
,
2022
, “
Airside Thermal-Hydraulic and Fouling Performances of Economizers With Integrally-Molded Spiral Finned Tubes for Residual Heat Recovery
,”
Appl. Therm. Eng.
,
211
, p.
118365
.
24.
Nakao
,
A.
,
Valdman
,
A.
,
Costa
,
A. L. H.
,
Bagajewicz
,
M. J.
, and
Queiroz
,
E. M.
,
2017
, “
Incorporating Fouling Modeling Into Shell-and-Tube Heat Exchanger Design
,”
Ind. Eng. Chem. Res.
,
56
(
15
), pp.
4377
4385
.
25.
Heins
,
A.
,
Veiga
,
R.
,
Ruiz
,
C.
, and
Riera
,
A.
,
2007
, “
Fouling Monitoring and Cleaning Optimisation in a Heat Exchanger Network of a Crude Distillation Unit
,”
Heat Exchanger Fouling and Cleaning-VII
,
Tomar, Portugal
,
July 1–6
.
26.
Yamashita
,
Y.
,
2017
, “
Model-Based Monitoring of Fouling in a Heat Exchanger
,”
6th International Symposium on Advanced Control of Industrial Processes (AdCONIP)
,
Taipei,Taiwan
,
May 28–31
.
27.
Glatt
,
E.
,
Pjontek
,
D.
,
McKnight
,
C.
,
Wiens
,
J.
,
Wormsbecker
,
M.
, and
McMillan
,
J.
,
2021
, “
Hydrocarbon Condensation Modelling to Mitigate Fluid Coker Cyclone Fouling
,”
Can. J. Chem. Eng.
,
99
(
1
), pp.
209
221
.
28.
Sholahudin Rohman
,
F.
,
Muhammad
,
D.
,
Sudibyo
,
Nazri Murat
,
M.
, and
Azmi
,
A.
,
2022
, “
Application of Feed Forward Neural Network for Fouling Thickness Estimation in Low Density Polyethylene Tubular Reactor
,”
Mater Today Proc.
,
63
, pp.
S95
S100
.
29.
Drosatos
,
P.
,
Nikolopoulos
,
N.
, and
Kakaras
,
E.
,
2020
, “
An In-House Built Code Incorporated Into CFD Model for the Simulation of Boiler's Convection Section
,”
Fuel Process. Technol.
,
202
, p.
106333
.
30.
Pang
,
H. W.
,
Forsuelo
,
M.
,
Dong
,
X.
,
Hawtof
,
R. E.
,
Ranasinghe
,
D. S.
, and
Green
,
W. H.
,
2023
, “
Detailed Multiphase Chemical Kinetic Model for Polymer Fouling in a Distillation Column
,”
Ind. Eng. Chem. Res.
,
62
(
36
), pp.
14266
14285
.
31.
Borges De Carvalho
,
C.
,
Carvalho
,
E. P.
, and
Ravagnani
,
M. A. S. S.
,
2018
, “
Dynamic Analysis of Fouling Buildup in Heat Exchangers Designed According to TEMA Standards
,”
Ind. Eng. Chem. Res.
,
57
(
10
), pp.
3753
3764
.
32.
Kakaç
,
S.
,
Liu
,
H.
, and
Pramuanjaroenkij
,
A.
,
2002
,
Heat Exchangers
,
CRC Press
,
Boca Raton, FL
.
33.
Kr Gautam
,
R.
,
Parmar
,
N. S.
, and
Vyas
,
B. G.
,
2017
, “
Effect of Fouling on Thermal and Hydraulic Parameter of Shell and Tube Heat Exchanger
,”
Student's Conference
,
Prague
,
April 20
.
34.
Patil
,
P.
,
Srinivasan
,
B.
, and
Srinivasan
,
R.
,
2022
, “
Monitoring Fouling in Heat Exchangers Under Temperature Control Based on Excess Thermal and Hydraulic Loads
,”
Chem. Eng. Res. Des.
,
181
, pp.
41
54
.
35.
Patil
,
P.
,
Srinivasan
,
B.
, and
Srinivasan
,
R.
,
2022
, “
A Simple Model-Based Methodology to Characterize Foulants in Heat Exchangers Using Excess Thermal and Hydraulic Loads
,”
Chem. Eng. Res. Des.
,
185
, pp.
326
343
.
36.
Al Hadad
,
W.
,
Schick
,
V.
, and
Maillet
,
D.
,
2019
, “
Fouling Detection in a Shell and Tube Heat Exchanger Using Variation of Its Thermal Impulse Responses: Methodological Approach and Numerical Verification
,”
Appl. Therm. Eng.
,
155
, pp.
612
619
.
37.
Hazrati
,
H.
, and
Shayegan
,
J.
,
2016
, “
Influence of Suspended Carrier on Membrane Fouling and Biological Removal of Styrene and Ethylbenzene in MBR
,”
J. Taiwan Inst. Chem. Eng.
,
64
, pp.
59
68
.
38.
Araújo
,
P. J. P.
,
Leite
,
M. S.
, and
Kakuta Ravagnani
,
T. M.
,
2016
, “
Evaluation of the Parameters and Conditions of Process in the Ethylbenzene Dehydrogenation With Application of Permselective Membranes to Enhance Styrene Yield
,”
Sci. World J.
,
2016
, pp.
1
7
.
39.
Ulyev
,
L. M.
,
Kanischev
,
M. V.
,
Chibisov
,
R. E.
, and
Vasilyev
,
M. A.
,
2021
, “
Heat Integration of an Industrial Unit for the Ethylbenzene Production
,”
Energies (Basel)
,
14
(
13
), p.
3839
.
40.
Sarath Yadav
,
E.
,
Indiran
,
T.
,
Nayak
,
D.
,
Aditya Kumar
,
C.
, and
Selvakumar
,
M.
,
2019
, “
Simulation Study of Distillation Column Using Aspen Plus
,”
Mater. Today: Proc.
,
48
, pp.
330
337
.
41.
Sinnott
,
R.
,
2005
,
Chemical Engineering Design
,
Elsevier Butterworth-Heinemann
,
Oxford
.
42.
Ishiyama
,
E. M.
,
Paterson
,
W. R.
, and
Wilson
,
D. I.
,
2007
, “
The Effect of Fouling on Heat Transfer, Pressure Drop and Throughput in Refinery Preheat Trains: Optimisation of Cleaning Schedules
,”
Proceedings of Seventh International Conference on Heat Exchanger Fouling and Cleaning—Challenges and Opportunities
,
Tomar, Portugal
,
July 1–6
, pp.
47
56
.
43.
Parra-Santiago
,
J. J.
,
Guerrero-Fajardo
,
C. A.
, and
Sodré
,
J. R.
,
2015
, “
Distillation Process Optimization for Styrene Production From a Styrene-Benzene-Toluene System in a Petlyuk Column
,”
Chem. Eng. Process.: Process Intensif.
,
98
, pp.
106
111
.
44.
Kolmetz
,
K.
,
Kiong Ng
,
W.
,
Hua Lee
,
S.
,
Yee Lim
,
T.
,
Summers
,
D. R.
, and
Anthony Soyza
,
C.
,
2007
, “
Optimize Distillation Column Design for Improved Reliability in Operation and Maintenance
,”
Asia–Pac. J. Chem. Eng.
,
2
, pp.
294
307
.
45.
Turton
,
R.
,
Shaeiwitz
,
J.
,
Bhattacharyya
,
D.
, and
Whiting
,
W.
,
2018
,
Analysis, Synthesis, and Design of Chemical Processes
,
Pearson College Div, Prentice Hall
,
Upper Saddle River
.
46.
Neto
,
R. d. O.
,
Sotomonte
,
C. A. R.
, and
Coronado
,
C. J. R.
,
2021
, “
Off-Design Model of an ORC System for Waste Heat Recovery of an Internal Combustion Engine
,”
Appl. Therm. Eng.
,
195
, p.
117188
.
47.
Pereira
,
M. A. M.
,
Santos
,
L. F.
,
Caballero
,
J. A.
,
Ravagnani
,
M. A. S. S.
, and
Costa
,
C. B. B.
,
2022
, “
Energy and Economic Comparison of Five Mixed-Refrigerant Natural Gas Liquefaction Processes
,”
Energy Convers. Manage.
,
272
, p.
116364
.
48.
Toffolo
,
A.
,
Lazzaretto
,
A.
,
Manente
,
G.
, and
Paci
,
M.
,
2014
, “
A Multi-Criteria Approach for the Optimal Selection of Working Fluid and Design Parameters in Organic Rankine Cycle Systems
,”
Appl. Energy
,
121
, pp.
219
232
.
49.
Lemos
,
J. C.
,
Costa
,
A. L. H.
, and
Bagajewicz
,
M. J.
,
2022
, “
Design of Shell and Tube Heat Exchangers Considering the Interaction of Fouling and Hydraulics
,”
AIChE J.
,
68
(
5
), p.
e17586
.
50.
Nema
,
P. K.
, and
Datta
,
A. K.
,
2005
, “
A Computer Based Solution to Check the Drop in Milk Outlet Temperature Due to Fouling in a Tubular Heat Exchanger
,”
J. Food Eng.
,
71
(
2
), pp.
133
142
.
51.
Alabrudzinski
,
S.
, and
Markowski
,
M.
,
2022
, “
Impact of Temperature Approach on the Behavior of the Rectification Heat and Mass Exchanger Under Fouling Constraints
,”
Energy Rep.
,
8
, pp.
7312
7324
.
You do not currently have access to this content.