Rotors supported by gas foil bearings (GFBs) experience stability problem caused by subsynchronous vibrations. To obtain a GFB with satisfactory damping characteristics, this study presented a novel hybrid bump-metal mesh foil bearing (HB-MMFB) that consists of a bump foil and metal mesh blocks in an underlying supporting structure, which takes advantage of both bump-type foil bearings (BFBs) and MMFBs. A test rig with a nonrotating shaft was designed to estimate structure characterization. Results from the static load tests show that the proposed HB-MFBs exhibit an excellent damping level compared with the BFBs with a similar size because of the countless microslips in the metal mesh blocks. In the dynamic load tests, the HB-MFB with a metal mesh density of 36% presents a viscous damping coefficient that is approximately twice that of the test BFB. The dynamics structural coefficients of HB-MFBs, including structural stiffness, equivalent viscous damping, and structural loss factor, are all dependent on excitation frequency and motion amplitude. Moreover, they exhibit an obvious decrease with the decline in metal mesh density.

References

1.
Dellacorte
,
C.
,
2012
, “
Oil-Free Shaft Support System Rotordynamics: Past, Present and Future Challenges and Opportunities
,”
Mech. Syst. Signal Process.
,
29
, pp.
67
76
.
2.
Dellacorte
,
C.
, and
Valco
,
M. J.
,
2000
, “
Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbomachinery Applications
,”
Tribol. Trans.
,
43
(
4
), pp.
795
801
.
3.
Agrawal
,
G. L.
,
1997
, “
Foil Air/Gas Bearing Technology—An Overview
,”
ASME
Paper No. 97-GT-347.
4.
Dellacorte
,
C.
,
Radil
,
K. C.
,
Bruckner
,
R. J.
, and
Howard
,
S. A.
,
2008
, “
Design, Fabrication, and Performance of Open Source Generation I and II Compliant Hydrodynamic Gas Foil Bearings
,”
Tribol. Trans.
,
51
(
3
), pp.
254
264
.
5.
Heshmat
,
H.
,
2000
, “
Operation of Foil Bearings Beyond the Bending Critical Mode
,”
ASME J. Tribol.
,
122
(
1
), pp.
192
198
.
6.
Dellacorte
,
C.
,
1998
, “
A New Foil Air Bearing Test Rig for Use to 700 C and 70,000 rpm
,”
Tribol. Trans.
,
41
(
3
), pp.
335
340
.
7.
Kim
,
T. H.
, and
Andres
,
L. S.
,
2008
, “
Heavily Loaded Gas Foil Bearings: A Model Anchored to Test Data
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
012504
.
8.
Heshmat
,
H.
,
1994
, “
Advancements in the Performance of Aerodynamic Foil Journal Bearings: High Speed and Load Capability
,”
ASME J. Tribol.
,
116
(
2
), pp.
287
294
.
9.
Lee
,
Y.-B.
,
Kim
,
T.-H.
,
Kim
,
C.-H.
,
Lee
,
N.-S.
, and
Choi
,
D.-H.
,
2004
, “
Dynamic Characteristics of a Flexible Rotor System Supported by a Viscoelastic Foil Bearing (VEFB)
,”
Tribol. Int.
,
37
(
9
), pp.
679
687
.
10.
Feng
,
K.
, and
Kaneko
,
S.
,
2009
, “
Thermohydrodynamic Study of Multiwound Foil Bearing Using Lobatto Point Quadrature
,”
ASME J. Tribol.
,
131
(
2
), p.
021702
.
11.
Feng
,
K.
,
Zhao
,
X.
, and
Guo
,
Z.
,
2014
, “
Design and Structural Performance Measurements of a Novel Multi-Cantilever Foil Bearing
,”
Proc. Inst. Mech. Eng., Part C
,
229
(
10
), pp.
1830
1838
.
12.
Dykas
,
B.
,
Bruckner
,
R.
,
Dellacorte
,
C.
,
Edmonds
,
B.
, and
Prahl
,
J.
,
2009
, “
Design, Fabrication, and Performance of Foil Gas Thrust Bearings for Microturbomachinery Applications
,”
ASME J. Eng. Gas Turbines Power
,
131
(
1
), p.
012301
.
13.
San Andrés
,
L.
,
Rubio
,
D.
, and
Kim
,
T. H.
,
2007
, “
Rotordynamic Performance of a Rotor Supported on Bump Type Foil Gas Bearings: Experiments and Predictions
,”
ASME J. Eng. Gas Turbines Power
,
129
(
3
), pp.
850
857
.
14.
Kim
,
T. H.
,
2007
, “
Analysis of Side End Pressurized Bump Type Gas Foil Bearings: A Model Anchored to Test Data
,” Ph.D. thesis, Texas A&M University, College Station, TX.
15.
San Andrés
,
L.
, and
Chirathadam
,
T. A.
,
2011
, “
Identification of Rotordynamic Force Coefficients of a Metal Mesh Foil Bearing Using Impact Load Excitations
,”
ASME J. Eng. Gas Turbines Power
,
133
(
11
), p.
112501
.
16.
Ao
,
H.
,
Jiang
,
H.
,
Wei
,
W.
, and
Ulanov
,
A.
,
2006
, “
Study on the Damping Characteristics of MR Damper in Flexible Supporting of Turbo-Pump Rotor for Engine
,”
IEEE 1st International Symposium on Systems and Control in Aerospace and Astronautics (ISSCAA)
, pp.
5
622
.
17.
Zarzour
,
M.
, and
Vance
,
J.
,
2000
, “
Experimental Evaluation of a Metal Mesh Bearing Damper
,”
ASME J. Eng. Gas Turbines Power
,
122
(
2
), pp.
326
329
.
18.
Okayasu
,
A.
,
Ohta
,
T.
, and
Azuma
,
T.
,
1990
, “
Vibration Problem in LE-7 Liquid Hydrogen Turbopump
,”
AIAA
Paper No. N90-2250.
19.
San Andrés
,
L.
,
Chirathadam
,
T. A.
, and
Kim
,
T. H.
,
2010
, “
Measurement of Structural Stiffness and Damping Coefficients in a Metal Mesh Foil Bearing
,”
ASME J. Eng. Gas Turbines Power
,
132
(
3
), p.
032503
.
20.
San Andrés
,
L.
,
Chirathadam
,
T. A.
,
Ryu
,
K.
, and
Kim
,
T. H.
,
2010
, “
Measurements of Drag Torque, Lift-Off Journal Speed, and Temperature in a Metal Mesh Foil Bearing
,”
ASME J. Eng. Gas Turbines Power
,
132
(
11
), p.
112503
.
21.
San Andrés
,
L.
, and
Chirathadam
,
T. A.
,
2011
, “
Metal Mesh Foil Bearing: Effect of Motion Amplitude, Rotor Speed, Static Load, and Excitation Frequency on Force Coefficients
,”
ASME J. Eng. Gas Turbines Power
,
133
(
12
), p.
122503
.
22.
Lee
,
Y.-B.
,
Kim
,
T. Y.
,
Kim
,
C. H.
, and
Kim
,
T. H.
,
2012
, “
Effects of Mesh Density on Static Load Performance of Metal Mesh Gas Foil Bearings
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
012502
.
23.
San Andrés
,
L.
, and
Chirathadam
,
T. A.
,
2012
, “
A Metal Mesh Foil Bearing and a Bump-Type Foil Bearing: Comparison of Performance for Two Similar Size Gas Bearings
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
102501
.
24.
Al-Khateeb
,
E. M.
,
2002
, “
Design, Modeling and Experimental Investigation of Wire Mesh Vibration Dampers
,” Ph.D. thesis, Texas A&M University, College Station, TX.
25.
San Andrés
,
L.
,
Ryu
,
K.
, and
Kim
,
T. H.
,
2011
, “
Identification of Structural Stiffness and Energy Dissipation Parameters in a Second Generation Foil Bearing: Effect of Shaft Temperature
,”
ASME J. Eng. Gas Turbines Power
,
133
(
3
), p.
032501
.
26.
Rubio
,
D.
, and
San Andrés
,
L.
,
2007
, “
Structural Stiffness, Dry Friction Coefficient, and Equivalent Viscous Damping in a Bump-Type Foil Gas Bearing
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
494
502
.
27.
Kim
,
T. H.
, and
San Andrés
,
L.
,
2007
, “
Analysis of Advanced Gas Foil Bearings With Piecewise Linear Elastic Supports
,”
Tribol. Int.
,
40
(
8
), pp.
1239
1245
.
28.
Breedlove
,
A. W.
,
2007
, “
Experimental Identification of Structural Force Coefficients in a Bump-Type Foil Bearing
,” M. S. thesis, Texas A&M University, College Station, TX.
29.
Rubio
,
D.
, and
San Andrés
,
L.
,
2007
, “
Structural Stiffness, Dry Friction Coefficient, and Equivalent Viscous Damping in a Bump-Type Foil Gas Bearing
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
494
502
.
30.
Salehi
,
M.
,
Heshmat
,
H.
, and
Walton
,
J. F.
,
2003
, “
On the Frictional Damping Characterization of Compliant Bump Foils
,”
ASME J. Tribol.
,
125
(
4
), pp.
804
813
.
31.
Feng
,
K.
, and
Guo
,
Z.
,
2014
, “
Prediction of Dynamic Characteristics of a Bump-Type Foil Bearing Structure With Consideration of Dynamic Friction
,”
Tribol. Trans.
,
57
(
2
), pp.
230
241
.
32.
De Wit
,
C. C.
, and
Lischinsky
,
P.
,
1997
, “
Adaptive Friction Compensation With Partially Known Dynamic Friction Model
,”
Int. J. Adaptive Control Signal Process.
,
11
(
1
), pp.
65
80
.
33.
Weaver
,
W.
, Jr.
,
Timoshenko
,
S. P.
, and
Young
,
D. H.
,
1990
,
Vibration Problems in Engineering
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.