The results of the studies on the formation of surface and boundary layers in commercial lithium (LT4-S3) and calcium (STP) greases near the walls of six different materials are presented. Two elastomeric materials (nitrile-butadiene rubber (NBR), silicone rubber (MVQ/VMQ)), two thermoplastic materials (polyoxymethylene (POM), polyethylene (PE)), and two metal (copper C11000 and steel 304) alloys were used in the tests. The tests were carried out using a rotational rheometer operating in the plate/plate configuration. Structural viscosity–shear rate curves were determined and dynamic oscillatory tests were carried out. The tests have shown that the metal alloys have the highest capacity to adsorb grease thickener particles on their surface. The elastomeric materials have the smallest effect on the change in structural viscosity in the vicinity of the wall, which indicates their low capacity to form a surface layer in the tested commercial greases.

References

1.
Czarny
,
R.
,
2002
, “
The Influence of Surface Material and Topography on the Wall Effect of Grease
,”
Lubr. Sci.
,
14
(
2
), pp.
255
274
.
2.
Biernacki
,
K.
,
2006
, “
An Analysis of the Phenomena Occurring in the Boundary Layer of Grease
,”
Tribol.–tarcie, zuzycie i smarowanie
,
5
(
37
), pp.
111
129
(in Polish).
3.
Biernacki
,
K.
,
2006
, “
The Influence of the Kind of Wall Material, the Shear Rate and Temperature on the Value of Shear Stress in Greases
,”
Tribol.–tarcie, zuzycie i smarowanie
,
6
(
38
), pp.
75
85
(in Polish).
4.
Paszkowski
,
M.
,
2013
,
Tribology—Fundamentals and Advancements
,
J.
Gegner
, ed.,
InTech
,
Rijeka, Croatia
, Chap. 3.
5.
Balan
,
C.
, and
Franco
,
J. M.
,
2001
, “
Influence of Geometry on Transient and Steady Flow of Lubricating Grease
,”
Tribol. Trans.
,
44
(
1
), pp.
53
58
.
6.
Yeong
,
S. K.
,
Luckham
,
P. F.
, and
Tadros
,
T. F.
,
2004
, “
Steady Flow and Viscoelastic Properties of Lubricating Grease Containing Various Thickener Concentrations
,”
J. Colloid Interface Sci.
,
274
(
1
), pp.
285
293
.
7.
Sochi
,
T.
,
2011
, “
Slip at Fluid—Solid Interface
,”
Polym. Rev.
,
51
(
4
), pp.
309
340
.
8.
Czarny
,
R.
, and
Moes
,
H.
,
1981
, “
Some Aspects of Lubricating Grease Flow
,”
International Tribology Congress—EUROTRIB ‘81
, Warsaw, Poland, Vol.
3
, pp.
68
85
.
9.
Czarny
,
R.
,
1989
, “
Einfluss der Grenzschichtausbildung von Schmierfetten auf die Durchflusswiderstand
,”
Schmierungstechnik
,
20
(
12
), pp.
371
372
.
10.
Czarny
,
R.
,
2001
, “
A Method for the Determination of the Limiting Stress in Greases
,”
2nd World Tribology Congress
, Vienna, Austria, CD-ROM.
11.
Czarny
,
R.
,
2004
,
Greases
,
Wydawnictwa Naukowo-Techniczne
,
Warsaw, Poland
, (in Polish).
12.
Czarny
,
R.
,
1993
, “
The Influence of the Kind of Surface Material on the Wall Effect of Grease
,”
6th International Congress on Tribology
, Budapest, Hungary, Vol.
2
, pp.
247
252
.
13.
Segré
,
G.
, and
Silberberg
,
A.
,
1962
, “
Behavior of Macroscopic Rigid Spheres in Poiseuille Flow. Part II. Experimental Results and Interpretation
,”
J. Fluid Mech.
,
14
(01), pp.
136
157
.
14.
Vinogradov
,
G. V.
,
Froishteter
,
G. B.
,
Trilsky
,
K. K.
, and
Smorodinsky
,
E. L.
,
1975
, “
The Flow of Plastic Disperse Systems in the Presence of the Wall Effect
,”
Rheol. Acta
,
14
(
9
), pp.
765
775
.
15.
Vinogradov
,
G. V.
,
Froishteter
,
G. B.
, and
Trilsky
,
K. K.
,
1978
, “
The Generalized Theory of Flow of Plastic Disperse Systems With Account of the Wall Effect
,”
Rheol. Acta
,
17
(
2
), pp.
156
165
.
16.
Swartz
,
C. J.
, and
Hardy
,
B.
,
1991
, “
Mathematical Model of Grease Flow in Pipes
,”
NLGI Spokesman
,
55
(
3
), pp.
14
17
.
17.
Delgado
,
M. A.
,
Franco
,
J. M.
,
Partal
,
P.
, and
Gallegos
,
C.
,
2005
, “
Experimental Study of Grease Flow in Pipelines: Wall Slip and Air Entrainment Effects
,”
Chem. Eng. Process.
,
44
(
7
), pp.
805
817
.
18.
Ruiz-Viera
,
M. J.
,
Delgado
,
M. A.
,
Franco
,
J. M.
, and
Gallegos
,
C.
,
2006
, “
Evaluation of Wall Slip Effects in the Lubricating Grease/Air Two-Phase Flow Along Pipelines
,”
J. Non-Newtonian Fluid Mech.
,
139
(
3
), pp.
190
196
.
19.
Ruiz-Viera
,
M. J.
,
Delgado
,
M. A.
,
Franco
,
J. M.
,
Sanchez
,
M. C.
, and
Gallegos
,
C.
,
2006
, “
On the Drag Reduction for the Two-Phase Horizontal Pipe Flow of Highly Viscous Non-Newtonian Liquid/Air Mixtures: Case of Lubricating Grease
,”
Int. J. Multiphase Flow
,
32
(
2
), pp.
232
247
.
20.
Green
,
T. M.
,
Baart
,
P.
,
Westerberg
,
L. G.
,
Lundström
,
T. S.
,
Höglund
,
E.
,
Lugt
,
P. M.
, and
Li
,
J. X.
,
2011
, “
A New Method to Visualize Grease Flow in a Double Restriction Seal Using Microparticle Image Velocimetry
,”
Tribol. Trans.
,
54
(
5
), pp.
784
792
.
21.
Li
,
J. X.
,
Höglund
,
E.
,
Westerberg
,
L. G.
,
Green
,
T. M.
,
Lundström
,
T. S.
,
Lugt
,
P. M.
, and
Baart
,
P.
,
2012
, “
μPIV Measurement of Grease Velocity Profiles in Channels With Two Different Types of Flow Restrictions
,”
Tribol. Int.
,
54
, pp.
94
99
.
22.
Gow
,
G.
,
1997
,
Chemistry and Technology of Lubricants
, 2nd ed.,
R. M.
Mortier
, and
S. T.
Orzulik
, eds.,
Chapman & Hall
,
London
, pp.
306
319
.
23.
Barnes
,
H. A.
,
1995
, “
A Review of the Slip (Wall Depletion) of Polymer Solution, Emulsions and Particle Suspensions in Viscometers: Its Cause, Character and Cure
,”
J. Non-Newtonian Fluid Mech.
,
56
(
3
), pp.
221
251
.
24.
Lugt
,
P.
,
2013
,
Grease Lubrication in Rolling Bearings
,
Wiley
,
Chichester, UK
.
25.
Shih
,
W. H.
,
Shih
,
W. Y.
,
Kim
,
S. I.
,
Liu
,
J.
, and
Aksay
,
I. A.
,
1990
, “
Scaling Behaviour of the Elastic Properties of Colloidal Gels
,”
Phys. Rev. A
,
42
(
8
), pp.
4772
4779
.
You do not currently have access to this content.