A mechanical interface behaves as the stiffness and damping when the interface is bearing a static normal force and a sine normal exciting force. For the interfacial normal damping, a calculating model was proposed. This proposed model studied the lateral contact (shoulder–shoulder contact) between upper and lower asperities in the elastic and elastic-perfectly plastic stages, which is neglected by other classical models. The normal force can be divided into a normal component and a tangential component when two asperities are contacting in dislocation. The relation between the loading–unloading normal component forces and deformation can be calculated, and then the strain energy dissipation between asperities can be gotten by integral. The friction energy dissipation also can be calculated based on the relation between loading–unloading tangential component forces and the slippage. Furthermore, the total interfacial energy dissipation can be obtained according to the statistical theory. Finally, the equivalent viscous damping is estimated using the vibration theory. The proposed model and classical models are compared by simulation and experiment, and it was found that the interfacial damping of the proposed model is more than the damping of the classical models. Moreover, the proposed model is consistent with the experimental results.

References

1.
Fu
,
W. P.
,
Huang
,
Y. M.
,
Zhang
,
X. L.
, and
Guo
,
Q.
,
2000
, “
Experimental Investigation of Dynamic Normal Characteristics of Machined Joint Surfaces
,”
ASME J. Vib. Acoust.
,
122
(
4
), pp.
393
398
.
2.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
657
662
.
3.
Kogutand
,
L.
, and
Komvopoulos
,
K.
,
2004
, “
Analysis of the Spherical Indentation Cycle for Elastic-Perfectly Plastic Solids
,”
J. Mater. Res.
,
19
(
12
), pp.
3641
3653
.
4.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.
5.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
,
2000
, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
,
122
(
1
), pp.
86
93
.
6.
Kadin
,
Y.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2006
, “
Unloading an Elastic-Plastic Contact of Rough Surfaces
,”
J. Mech. Phys. Solids
,
54
(
12
), pp.
2652
2674
.
7.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London
,
295
(
1442
), pp.
300
319
.
8.
You
,
J. M.
, and
Chen
,
T. N.
,
2011
, “
Statistical Model for Normal and Tangential Contact Parameters of Rough Surfaces
,”
Proc. Inst. Mech. Eng., Part C
,
225
(
1
), pp.
171
185
.
9.
Gorbatikh
,
L.
, and
Popova
,
M.
,
2006
, “
Modeling of a Locking Mechanism Between Two Rough Surfaces Under Cyclic Loading
,”
Int. J. Mech. Sci.
,
48
(
9
), pp.
1014
1020
.
10.
Sepehri
,
A.
, and
Farhang
,
K.
,
2008
, “
On Elastic Interaction of Nominally Flat Rough Surfaces
,”
ASME J. Tribol.
,
130
(
1
), p. 011014.
11.
Sepehri
,
A.
, and
Farhang
,
K.
,
2009
, “
Closed-Form Equations for Three Dimensional Elastic-Plastic Contact of Nominally Flat Rough Surfaces
,”
ASME J. Tribol.
,
131
(4), p. 041402.
12.
Abbott
,
E. J.
, and
Firestone
,
F. A.
,
1933
, “
Specifying Surface Quality—A Method Based on Accurate Measurement and Comparison
,”
ASME J. Mech. Eng.
,
55
, pp.
569
572
.
13.
Brake
,
M. R.
,
2012
, “
An Analytical Elastic-Perfectly Plastic Contact Model
,”
Int. J. Solids Struct.
,
49
(
22
), pp.
3129
3141
.
14.
Etsion
,
I.
,
Kligerman
,
Y.
, and
Kadin
,
Y.
,
2005
, “
Unloading of an Elastic-Plastic Loaded Spherical Contact
,”
Int. J. Solids Struct.
,
42
(
13
), pp.
3716
3729
.
15.
Jackson
,
R. L.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of Elastoplastic Hemispherical Contact Against a Rigid Flat
,”
ASME J. Tribol.
,
127
(
2
), pp.
343
354
.
16.
Jackson
,
R. L.
, and
Green
,
I.
,
2006
, “
A Statistical Model of Elasto-Plastic Asperity Contact Between Rough Surfaces
,”
Tribol. Int.
,
39
(
9
), pp.
906
914
.
17.
Jackson
,
R. L.
,
Green
,
I.
, and
Dan
,
B. M.
,
2010
, “
Predicting the Coefficient of Restitution of Impacting Elastic-Perfectly Plastic Spheres
,”
Nonlinear Dyn.
,
60
(
3
), pp.
217
229
.
18.
Cattaneo
,
C.
,
1938
, “
Sul contatto di due corpi elastici: distribuzione locale degli sforzi
,”
Accad. Lincei Rend.
,
27
(6), pp .342–348.
19.
Mindlin
,
R. D.
,
1949
, “
Compliance of Elastic Bodies in Contact
,” ASME J. Appl. Mech.,
16
, pp.
259
268
.
20.
Jäger
,
J.
,
1993
, “
Elastic Contact of Equal Spheres Under Oblique Forces
,”
Arch. Appl. Mech.
,
63
(
6
), pp.
402
412
.
21.
Jäger
,
J.
,
1995
, “
Axi-Symmetric Bodies of Equal Material in Contact Under Torsion or Shift
,”
Arch. Appl. Mech.
,
65
(
7
), pp.
478
487
.
22.
Jäger
,
J.
,
1999
, “
Uniaxial Deformation of a Random Packing of Particles
,”
Arch. Appl. Mech.
,
69
(
3
), pp.
181
203
.
23.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2007
, “
Elastic-Plastic Spherical Contact Under Combined Normal and Tangential Loading in Full Stick
,”
Tribol. Lett.
,
25
(
1
), pp.
61
70
.
24.
Fujimoto
,
T.
,
Kagami
,
J.
,
Kawaguchi
,
T.
, and
Hatazawa
,
T.
,
2000
, “
Micro-Displacement Characteristics Under Tangential Force
,”
Wear
,
241
(
2
), pp.
136
142
.
25.
Vijaywargiya
,
R.
, and
Green
,
I.
,
2007
, “
A Finite Element Study of the Deformations, Forces, Stress Formations, and Energy Losses in Sliding Cylindrical Contacts
,”
Int. J. Non-Linear Mech.
,
42
(
7
), pp.
914
927
.
26.
Jackson
,
R. L.
,
Duvvuru
,
R. S.
,
Meghani
,
H.
, and
Mahajan
,
M.
,
2007
, “
An Analysis of Elasto-Plastic Sliding Spherical Asperity Interaction
,”
Wear
,
262
(
1–2
), pp.
210
219
.
27.
Mulvihill
,
D. M.
,
Kartal
,
M. E.
,
Nowell
,
D.
, and
Hills
,
D. A.
,
2011
, “
An Elastic-Plastic Asperity Interaction Model for Sliding Friction
,”
Tribol. Int.
,
44
(
12
), pp.
1679
1694
.
28.
Faulkner
,
A.
, and
Arnell
,
R. D.
,
2000
, “
The Development of a Finite Element Model to Simulate the Sliding Interaction Between Two, Three-Dimensional, Elastoplastic, Hemispherical Asperities
,”
Wear
,
242
(
1–2
), pp.
114
122
.
29.
Boucly
,
V.
,
Nlias
,
D.
, and
Green
,
I.
,
2006
, “
Modeling of the Rolling and Sliding Contact Between Two Asperities—Part I: Numerical Methodology
,”
ASME
Paper No. IJTC2006-12103.
30.
Shi
,
X.
,
Zou
,
Y.
, and
Fang
,
H.
,
2016
, “
Numerical Investigation of the Three-Dimensional Elastic-Plastic Sloped Contact Between Two Hemispheric Asperities
,”
ASME J. Appl. Mech.
,
83
(
10
), p.
101004
.
31.
Zhao
,
B.
,
Zhang
,
S.
, and
Keer
,
L. M.
,
2016
, “
Semi-Analytical and Numerical Analysis of Sliding Asperity Interaction for Power-Law Hardening Materials
,”
Wear
,
364–365
, pp.
184
192
.
32.
Mccool
,
J. I.
,
1986
, “
Comparison of Models for the Contact of Rough Surfaces
,”
Wear
,
107
(
1
), pp.
37
60
.
33.
Kogut
,
L.
, and
Etsion
,
I.
,
2004
, “
A Static Friction Model for Elastic-Plastic Contacting Rough Surfaces
,”
ASME J. Tribol.
,
126
(
1
), pp.
34
40
.
34.
Eriten
,
M.
,
Polycarpou
,
A. A.
, and
Bergman
,
L. A.
,
2010
, “
Physics-Based Modeling for Partial Slip Behavior of Spherical Contacts
,”
Int. J. Solids Struct.
,
47
(
18–19
), pp.
2554
2567
.
35.
Greenwood
,
J. A.
,
Johnson
,
K. L.
, and
Matsubara
,
E.
,
1984
, “
A Surface Roughness Parameter in Hertz Contact
,”
Wear
,
100
(
1
), pp.
47
57
.
36.
Misra
,
A.
, and
Huang
,
S.
,
2011
, “
Effect of Loading Induced Anisotropy on the Shear Behavior of Rough Interfaces
,”
Tribol. Int.
,
44
(
5
), pp.
627
634
.
You do not currently have access to this content.