The effect of Mn modification on the tribological properties of Al-15Mg2Si-(0.5-2)Fe composites was investigated. The sliding wear tests were conducted under the applied pressures of 0.25, 0.5, and 1.0 MPa at the constant sliding speed of 0.13 m/s. According to the results, the behavior of FeMn-rich intermetallics against the strains induced by sliding wear has an important role in the wear behavior of composites. In low-Fe composites (0.5–1 wt % Fe), Mn promotes the formation of Chinese script α-Al15(Fe,Mn)3Si2 phases instead of harmful β-Al5FeSi platelets. The formation of these compounds strengthens the substrate and decreases its microcracking tendency giving rise to a more stable tribolayer and improved wear properties. At the higher Fe contents, Mn modification leads to the formation of primary polyhedral or star-like α-Al15(Fe,Mn)3Si2 compounds in the microstructure and substantially neutralizes the harmful effect of the primary β-Fe crystals on the wear behavior. However, when subjected to the friction-induced surface plastic strains, the near-surface α-FeMn particles fracture and incorporate into the tribolayer making it unstable and less protective. The tribolayer stability in Mn-modified composites decreases the chance of adhesion between contacting surfaces, and, under low applied pressures, lowers the average friction coefficient (AFC) and its fluctuation. At higher applied pressures, however, the nonmodified composites exhibit lower AFC, which is probably due to the negative impact of β-Fe fragments on the tribolayer shear strength.

References

1.
Saghafian
,
H.
,
Shabestari
,
S. G.
,
Ghoncheh
,
M. H.
, and
Sahihi
,
F.
,
2015
, “
Wear Behavior of Thixoformed Al-25 Wt% Mg2Si Composites Produced by Slope Casting Method
,”
Trib. Trans
,
58
(
2
), pp.
288
299
.
2.
Li
,
C.
,
Wu
,
Y.
,
Li
,
H.
, and
Liu
,
X.
,
2011
, “
Microstructural Formation in Hypereutectic Al-Mg2Si With Extra Si
,”
J. Alloys Compd.
,
477
(
1–2
), pp.
212
216
.
3.
Hu
,
J-L.
,
Tang
,
C-P.
,
Zhang
,
X-M.
, and
Deng
,
Y-L.
,
2013
, “
Modification of Mg2Si in Mg−Si Alloys With Neodymium
,”
Trans. Nonferrous Met. Soc. China
,
23
(
11
), pp.
3161
3166
.
4.
Yi
,
S.
,
2014
, “
Effect of Pr Modification Treatment on the Microstructure and Mechanical Properties of Cast Al-Mg2Si Metal Matrix Composite
,”
Adv. Mater. Res.
,
936
, pp.
23
27
.
5.
Zhang
,
J.
,
Fan
,
Z.
,
Wang
,
Y. Q.
, and
Zhou
,
B. L.
,
2000
, “
Microstructural Development of Al–15 wt.%Mg2Si In-Situ Composite With Mischmetal Addition
,”
Mater. Sci. Eng. A
,
A281
(
1–2
), pp.
104
112
.
6.
Qin
,
Q. D.
,
Zhao
,
Y. G.
,
Zhou
,
W.
, and
Cong
,
P. J.
,
2007
, “
Effect of Phosphorus on Microstructure and Growth Manner of Primary Mg2Si Crystal in Al-Mg2Si Alloys
,”
Mater. Sci. Eng. A
,
447
(
1–2
), pp.
186
191
.
7.
Azarbarmas
,
M.
,
Emamy
,
M.
,
Karamouz
,
M.
,
Alipour
,
M.
, and
Rassizadehghani
,
J.
,
2011
, “
The Effects of Boron Additions on the Microstructure, Hardness and Tensile Properties of in-Situ Al-15 wt% Mg2Si Composite
,”
Mater. Des.
,
32
(
10
), pp.
5049
5054
.
8.
Hadian
,
R.
,
Emamy
,
M.
, and
Campbell
,
J.
,
2009
, “
Modification of Cast Al-Mg2Si Metal Matrix Composite by Li
,”
Metall. Mater. Trans. B
,
40
(
6
), pp.
822
832
.
9.
Nordin
,
N. A.
,
Farahany
,
S.
,
Ourdjini
,
A.
,
Abu Bakar
,
T. A.
, and
Hamzah
,
E.
,
2014
, “
Refinement of Mg2Si Particulate Reinforced Al-20%Mg2Si In-Situ Composite With Addition of Antimony
,”
App. Mech. Mater.
,
663
, pp.
271
275
.
10.
WU
,
X-F.
,
Zhang
,
G-A.
, and
Wu
,
F-F.
,
2013
, “
Influence of Bi Addition on Microstructure and Dry Sliding Wear Behaviors of Cast Al−Mg2Si Metal Matrix Composite
,”
Trans. Nonferrous Met. Soc. China
,
23
(
6
), pp.
1532
1542
.
11.
Wu
,
X.-F.
,
Zhang
,
G.-G.
, and
Wu
,
F.-F.
,
2013
, “
Microstructure and Dry Sliding Wear Behavior of Cast Al–Mg2Si In-Situ Metal Matrix Composite Modified by Nd
,”
Rare Met.
,
32
(
3
), pp.
284
289
.
12.
Taylor
,
J. A.
,
2012
, “
Iron-Containing Intermetallic Phases in Al-Si Based Casting Alloys
,”
Prog. Mater. Sci.
,
1
, pp.
19
33
.
13.
Belov
,
N. A.
,
Aksenov
,
A. A.
, and
Eskin
,
D. G.
,
2002
,
Iron in Aluminium Alloys: Impurity and Alloying Element
, 1st ed.,
Taylor and Francis
,
Milton Park, NY
.
14.
Akaberi
,
N.
,
Taghiabadi
,
R.
, and
Razaghian
,
A.
,
2017
, “
Effect of Bifilm Oxides on the Dry Sliding Wear Behavior of Fe-Rich Al–Si Alloys
,”
ASME J. Tribol.
,
195
(
5
), p.
051602
.
15.
Nadim
,
A.
,
Taghiabadi
,
R.
,
Razaghian
,
A.
,
Noghani
,
M. T.
, and
Ghoncheh
,
M. H.
, “
Effect of Fe-Impurity on Tribological Properties of Al-15Mg2Si Composite
,”
Trans. Nonferrous Met. Soc. China
, p. TNMSC-2017-0593.R1.
16.
Taghiabadi
,
R.
,
Ghasemi
,
H. M.
, and
Shabestari
,
S. G.
,
2008
, “
Effect of Iron-Rich Intermetallics on the Sliding Wear Behavior of Al-Si Alloys
,”
Mater. Sci. Eng. A
,
490
(
1–2
), pp.
162
170
.
17.
Taghiabadi
,
R.
, and
Ghasemi
,
H. M.
,
2009
, “
Dry Sliding Wear Behaviour of Hypoeutectic Al-Si Alloys Containing Excess Iron
,”
Mater. Sci. Tech.
,
25
(
8
), pp.
1017
1022
.
18.
Abouei
,
V.
,
Saghafian
,
H.
,
Shabestari
,
S. G.
, and
Zarghami
,
M.
,
2010
, “
Effect of Fe-Rich Intermetallics on the Wear Behavior of Eutectic Al–Si Piston Alloy (LM13)
,”
J. Mater. Des
,
31
(
7
), pp.
3518
3524
.
19.
Abouei
,
V.
,
Shabestari
,
S. G.
, and
Saghafian
,
H.
,
2010
, “
Dry Sliding Wear Behaviour of Hypereutectic Al–Si Piston Alloys Containing Iron-Rich Intermetallics
,”
Mater. Charact.
,
61
(
11
), pp.
1089
1096
.
20.
Bidmeshki
,
C.
,
Abouei
,
V.
,
Shabestari
,
S. G.
, and
Noghani
,
M. T.
,
2016
, “
Effect of Mn Addition on Fe-Rich Intermetallics Morphology and Dry Sliding Wear Investigation of Hypereutectic Al-17.5%Si Alloys
,”
J. Mater. Res. Tech.
,
5
(
3
), pp.
250
258
.
21.
Ghorbani
,
M. R.
,
Emamy
,
M.
,
Khorshidi
,
R.
,
Rasizadehghani
,
J.
, and
Emami
,
A. R.
,
2012
, “
Effect of Mn Addition on the Microstructure and Tensile Properties of Al-15%Mg2Si Composite
,”
Mater. Sci. Eng. A
,
550A
, pp.
191
198
.
22.
Emamy
,
M.
,
Emami
,
A. R.
,
Khorshidi
,
R.
, and
Ghorbani
,
M. R.
,
2013
, “
The Effect of Fe-Rich Intermetallics on the Microstructure, Hardness and Tensile Properties of Al–Mg2Si Die-Cast Composite
,”
Mater. Des.
,
46
, pp.
881
888
.
23.
Cao
,
X.
, and
Campbell
,
J.
,
2004
, “
The Solidification Characteristics of Fe-Rich Intermetallics in Al-11.5Si-0.4 Mg Cast Alloys
,”
Metall. Mater. Trans. A
,
35A
(
5
), pp.
1425
1434
.
24.
Narayanan
,
L. A.
,
Samuel
,
F. H.
, and
Gruzleski
,
J. E.
,
1994
, “
Crystallization Behavior of Iron-Containing Intermetallic Compounds in 319 Aluminum Alloy
,”
Metall. Mater. Trans. A
,
25A
(
8
), pp.
1761
1773
.
25.
Fan
,
Y.
,
Huang
,
K.
, and
Makhlouf
,
M. M.
,
2015
, “
Precipitation Strengthening in Al-Ni-Mn Alloys
,”
Metall. Mater. Trans. A
,
46A
(
12
), pp.
5830
5841
.
26.
Cao
,
X.
, and
Campbell
,
J.
,
2000
, “
Precipitation of Primary Intermetallic Compounds in Liquid Al-11.5Si-0.4 Mg Alloy
,”
Lnt. J. Cast Met. Res.
,
13
(
3
), pp.
175
184
.
27.
Sarmadi
,
H.
,
Kokabi
,
A. H.
, and
Seyed Reihani
,
S. M.
,
2013
, “
Friction and Wear Performance of Copper–Graphite Surface Composites Fabricated by Friction Stir Processing (FSP)
,”
Wear
,
304
(
1–2
), pp.
1
12
.
28.
Rigney
,
D. A.
, and
Hammerberg
,
J. E.
,
1998
, “
Unlubricated Sliding Behavior of Metals
,”
MRS Bull.
,
23
(
6
), pp.
32
36
.
29.
Heilmann
,
P.
, and
Rigney
,
D. A.
,
1981
, “
Running-in Process Affecting Friction and Wear
,”
Eighth Leeds-Lyon
Symposium
on Tribology, Lyon, France, Sept. 8–11, pp.
25
32
.
30.
Ma
,
H. R.
,
Li
,
J. W.
,
Jiao
,
J.
,
Chang
,
C. T.
,
Wang
,
G.
,
Shen
,
J.
,
Wang
,
X. M.
, and
Li
,
W.
,
2017
, “
Wear Resistance of Fe-Based Amorphous Coatings Prepared by AC-HVAF and HVOF
,”
Mater. Sci. Tech.
,
33
(
1
), pp.
65
71
.
31.
Richard
,
D.
,
Iordanoff
,
I.
,
Brthier
,
Y.
,
Renouf
,
M.
, and
Fillot
,
N.
,
2007
, “
Friction Coefficient as a Macroscopic View of Local Dissipation
,”
ASME J. Tribol.
,
129
(
4
), pp.
829
835
.
32.
Ramesh
,
C. S.
, and
Prasad
,
T. B.
,
2009
, “
Friction and Wear Behavior of Graphite-Carbon Short Fiber Reinforced Al–17%Si Alloy Hybrid Composite
,”
ASME J. Tribol.
,
131
(
1
), p.
014501
.
33.
Hutching
,
I. M.
,
1992
,
Tribology: Friction and Wear of Engineering Materials
,
Edward
,
Arnold, UK
.
34.
Hirani
,
H.
,
2016
,
Fundamentals of Engineering Tribology With Applications
,
Cambridge University Press
,
Delhi, India
.
You do not currently have access to this content.