While commercial biomedical titanium alloys present excellent biocompatibility and corrosion resistance, their poor wear resistance remains a major limitation. In this study, alloying with aluminum was used to improve the tribological performance of an experimental Ti−Si−Zr alloy. The effect of Al content on the alloy's microstructure and mechanical properties was evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Vickers hardness measurements. Sliding wear testing was performed in a ball-on-disk setup, using stainless steel and silicon nitride counterparts and serum solution lubrication. Microstructural examinations showed that an increase in Al content induced a change from eutectic cell microstructure to regular near-equiaxed particles and produced a solid solution strengthening, increasing alloy's hardness. The adhesive tendencies of the α-Ti matrix to the counterpart dominated the frictional response, and a lower friction coefficient was found against silicon nitride compared to stainless steel. In wear tests against stainless steel counterparts, the alloys showed significantly higher wear rates than the CoCr and Ti−6Al−4V references due to severe abrasive wear, induced by the adhesion of titanium matrix to the counterpart. The Al addition had a positive effect on the wear resistance against silicon nitride due to the solid solution strengthening and the change in microstructure, which reduced the risk of brittle delamination. However, while this gave a trend for a lower wear rate against silicon nitride than the Ti−6Al−4V alloy, the wear rate was still approximately three times higher than that of CoCr.

References

1.
Budinski
,
K. G.
,
1991
, “
Tribological Properties of Titanium-Alloys
,”
Wear
,
151
(
2
), pp.
203
217
.
2.
Miyoshi
,
K.
, and
Buckley
,
D. H.
,
1982
, “
Adhesion and Friction of Transition Metals in Contact With Non-Metallic Hard Materials
,”
Wear
,
77
(
2
), pp.
253
264
.
3.
Buckley
,
D. H.
, and
Johnson
,
R. L.
,
1966
, “
Friction, Wear, and Adhesion Characteristics of Titanium-Aluminum Alloys in Vacuum
,” National Aeronautics and Space Administration, Washington, DC, Report No. NASA-TN-D-3235.
4.
Dong
,
H.
, and
Bell
,
T.
,
1999
, “
Tribological Behaviour of Alumina Sliding Against Ti6Al4V in Unlubricated Contact
,”
Wear
,
225–229
, pp.
874
884
.
5.
Affatato
,
S.
,
2012
,
Wear of Orthopaedic Implants and Artificial Joints
,
Elsevier Science
, Cambridge, UK.
6.
Poitout
,
D. G.
, and
Kotz
,
R.
,
2004
,
Biomechanics and Biomaterials in Orthopedics
,
Springer
,
London
.
7.
Karachalios
,
T.
,
2013
,
Bone-Implant Interface in Orthopedic Surgery: Basic Science to Clinical Applications
,
Springer
,
London
.
8.
Hiromoto
,
S.
, and
Mischler
,
S.
,
2006
, “
The Influence of Proteins on the Fretting–Corrosion Behaviour of a Ti6Al4V Alloy
,”
Wear
,
261
(
9
), pp.
1002
1011
.
9.
Agins
,
H. J.
,
Alcock
,
N. W.
,
Bansal
,
M.
,
Salvati
,
E. A.
,
Wilson
,
P. D. J.
,
Pellicci
,
P. M.
, and
Bullough
,
P. G.
,
1988
, “
Metallic Wear in Failed Titanium-Alloy Total Hip Replacements—A Histological and Quantitative Analysis
,”
J. Bone Jt. Surg. Am.
,
70
(
3
), pp.
347
356
.
10.
Revell
,
P. A.
,
2008
, “
The Combined Role of Wear Particles, Macrophages and Lymphocytes in the Loosening of Total Joint Prostheses
,”
J. R. Soc. Interface
,
5
(
28
), pp.
1263
1278
.
11.
Yildiz
,
F.
,
Yetim
,
A. F.
,
Alsaran
,
A.
, and
Efeoglu
,
I.
,
2009
, “
Wear and Corrosion Behaviour of Various Surface Treated Medical Grade Titanium Alloy in Bio-Simulated Environment
,”
Wear
,
267
(
5–8
), pp.
695
701
.
12.
Bansal
,
D. G.
,
Kirkham
,
M.
, and
Blau
,
P. J.
,
2013
, “
Effects of Combined Diffusion Treatments and Cold Working on the Sliding Friction and Wear Behavior of Ti–6Al–4V
,”
Wear
,
302
(
1–2
), pp.
837
844
.
13.
Nolan
,
D.
,
Huang
,
S. W.
,
Leskovsek
,
V.
, and
Braun
,
S.
,
2006
, “
Sliding Wear of Titanium Nitride Thin Films Deposited on Ti–6Al–4V Alloy by PVD and Plasma Nitriding Processes
,”
Surf. Coat. Technol.
,
200
(
20–21
), pp.
5698
5705
.
14.
Farè
,
S.
,
Lecis
,
N.
,
Vedani
,
M.
,
Silipigni
,
A.
, and
Favoino
,
P.
,
2012
, “
Properties of Nitrided Layers Formed During Plasma Nitriding of Commercially Pure Ti and Ti–6Al–4V Alloy
,”
Surf. Coat. Technol.
,
206
(
8–9
), pp.
2287
2292
.
15.
Weng
,
F.
,
Chen
,
C.
, and
Yu
,
H.
,
2014
, “
Research Status of Laser Cladding on Titanium and Its Alloys: A Review
,”
Mater. Des.
,
58
, pp.
412
425
.
16.
Taktak
,
S.
, and
Akbulut
,
H.
,
2007
, “
Dry Wear and Friction Behaviour of Plasma Nitrided Ti–6AL–4V Alloy After Explosive Shock Treatment
,”
Tribol. Int.
,
40
(
3
), pp.
423
432
.
17.
Dahm
,
K. L.
,
2009
, “
Fatigue-Like Failure of Thermally Oxidised Titanium in Reciprocating Pin-on-Plate Wear Tests
,”
Wear
,
267
(
1–4
), pp.
409
416
.
18.
Kim
,
I. Y.
,
Choi
,
B. J.
,
Kim
,
Y. J.
, and
Lee
,
Y. Z.
,
2011
, “
Friction and Wear Behavior of Titanium Matrix (TiB+TiC) Composites
,”
Wear
,
271
(
9–10
), pp.
1962
1965
.
19.
Kim
,
J.-S.
,
Lee
,
K.-M.
,
Cho
,
D.-H.
, and
Lee
,
Y.-Z.
,
2013
, “
Fretting Wear Characteristics of Titanium Matrix Composites Reinforced by Titanium Boride and Titanium Carbide Particulates
,”
Wear
,
301
(
1–2
), pp.
562
568
.
20.
Choi
,
B.-J.
,
Kim
,
I.-Y.
,
Lee
,
Y.-Z.
, and
Kim
,
Y.-J.
,
2014
, “
Microstructure and Friction/Wear Behavior of (TiB+TiC) Particulate-Reinforced Titanium Matrix Composites
,”
Wear
,
318
(
1–2
), pp.
68
77
.
21.
Balaji
,
V. S.
, and
Kumaran
,
S.
,
2015
, “
Dry Sliding Wear Behavior of Titanium–(TiB+TiC) In Situ Composite Developed by Spark Plasma Sintering
,”
Tribol. Trans.
,
58
(
4
), pp.
698
703
.
22.
Samsonov
,
G. V.
,
Dvorina
,
L. A.
, and
Rud' Silicides
,
B. V.
,
1979
,
Metallurgy
, Moscow.
23.
Massalski, T. B., Okamoto, H., Subramanian, P. R., and Kacprzak, L., 1990,
Binary Alloy Phase Diagrams
, 2nd ed., ASM International, Materials Park, OH.
24.
Tang
,
Z.
,
Williams
,
J. J.
,
Thom
,
A. J.
, and
Akinc
,
M.
,
2008
, “
High Temperature Oxidation Behavior of Ti5Si3-Based Intermetallics
,”
Intermetallics
,
16
(
9
), pp.
1118
1124
.
25.
Vojtěch
,
D.
,
Novák
,
P.
,
Macháč
,
P.
,
Morťaniková
,
M.
, and
Jurek
,
K.
,
2008
, “
Surface Protection of Titanium by Ti5Si3 Silicide Layer Prepared by Combination of Vapour Phase Siliconizing and Heat Treatment
,”
J. Alloys Compd.
,
464
(
1–2
), pp.
179
184
.
26.
Tkachenko
,
S.
,
Datskevich
,
O.
,
Kulak
,
L.
,
Jacobson
,
S.
,
Engqvist
,
H.
, and
Persson
,
C.
,
2014
, “
Wear and Friction Properties of Experimental Ti–Si–Zr Alloys for Biomedical Applications
,”
J. Mech. Behav. Biomed. Mater.
,
39
, pp.
61
72
.
27.
Alhammad
,
M.
,
Esmaeili
,
S.
, and
Toyserkani
,
E.
,
2008
, “
Surface Modification of Ti–6Al–4V Alloy Using Laser-Assisted Deposition of a Ti–Si Compound
,”
Surf. Coat. Technol.
,
203
(
1–2
), pp.
1
8
.
28.
Hajbagheri
,
F. A.
,
Kashani Bozorg
,
S. F.
, and
Amadeh
,
A. A.
,
2008
, “
Microstructure and Wear Assessment of TIG Surface Alloying of CP-Titanium With Silicon
,”
J. Mater. Sci.
,
43
(
17
), pp.
5720
5727
.
29.
Tkachenko
,
S.
,
Nečas
,
D.
,
Datskevich
,
O.
,
Čupera
,
J.
,
Spotz
,
Z.
,
Vrbka
,
M.
,
Kulak
,
L.
, and
Foret
,
R.
,
2015
, “
Tribological Performance of Ti−Si-Based In Situ Composites
,”
Tribol. Trans.
,
59
(
2
), pp.
1
40
.
30.
Zhan
,
Y.
,
Yu
,
Z.
,
Wang
,
Y.
,
Xu
,
Y.
, and
Shi
,
X.
,
2007
, “
Microstructure and Tribological Behavior of Ti-Si Eutectic Alloys With Al Addition
,”
Tribol. Lett.
,
26
(
1
), pp.
25
31
.
31.
Zhang
,
Z.
, and
Flower
,
H. M.
,
1991
, “
Composition and Lattice Parameters of Silicide and Matrix in Cast Ti–Si–Al–Zr Alloys
,”
Mater. Sci. Technol.
,
7
(
9
), pp.
812
817
.
32.
Wu
,
J.
,
Qiu
,
G.
, and
Zhang
,
L.
,
1994
, “
The β-Ti(Al,Si) + Ti5(Si,Al)3 Eutectic Reaction in the Ti-Al-Si Ternary System
,”
Scr. Metall. Mater.
,
30
(
2
), pp.
213
218
.
33.
Azevedo
,
C. R. F.
, and
Flower
,
H. M.
,
2002
, “
Experimental and Calculated Ti-Rich Corner of the Al-Si-Ti Ternary Phase Diagram
,”
Calphad
,
26
(
3
), pp.
353
373
.
34.
Bulanova
,
M.
,
Firstov
,
S.
,
Gornaya
,
I.
, and
Miracle
,
D.
,
2004
, “
The Melting Diagram of the Ti-Corner of the Ti–Zr–Si System and Mechanical Properties of as-Cast Compositions
,”
J. Alloys Compd.
,
384
(
1–2
), pp.
106
114
.
35.
Zhan
,
Y.
,
Zhang
,
X.
,
Hu
,
J.
,
Guo
,
Q.
, and
Du
,
Y.
,
2009
, “
Evolution of the Microstructure and Hardness of the Ti–Si Alloys During High Temperature Heat-Treatment
,”
J. Alloys Compd.
,
479
(
1–2
), pp.
246
251
.
36.
Guenther
,
L. E.
, and
Gascoyne
,
T. C.
,
2017
, “
Pin-on-Disk Wear Testing of Biomaterials Used for Total Joint Replacements
,” Experimental Methods in Orthopaedic Biomechanics, Elsevier, Amsterdam, The Netherlands, pp.
299
311
.
37.
Carrasquero
,
E.
,
Bellosi
,
A.
, and
Staia
,
M. H.
,
2005
, “
Characterization and Wear Behavior of Modified Silicon Nitride
,”
Int. J. Refract. Met. Hard Mater.
,
23
(
4–6
), pp.
391
397
.
38.
Bal
,
B. S.
,
Khandkar
,
A.
,
Lakshminarayanan
,
R.
,
Clarke
,
I.
,
Hoffman
,
A. A.
, and
Rahaman
,
M. N.
,
2009
, “
Fabrication and Testing of Silicon Nitride Bearings in Total Hip Arthroplasty: Winner of the 2007 ‘HAP’ Paul Award
,”
J. Arthroplasty
,
24
(
1
), pp.
110
116
.
39.
Olofsson
,
J.
,
Grehk
,
T. M.
,
Berlind
,
T.
,
Persson
,
C.
,
Jacobson
,
S.
, and
Engqvist
,
H.
,
2012
, “
Evaluation of Silicon Nitride as a Wear Resistant and Resorbable Alternative for Total Hip Joint Replacement
,”
Biomatter
,
2
(
2
), pp.
94
102
.
40.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
41.
Chiba
,
A.
,
Kumagai
,
K.
,
Nomura
,
N.
, and
Miyakawa
,
S.
,
2007
, “
Pin-on-Disk Wear Behavior in a Like-on-Like Configuration in a Biological Environment of High Carbon Cast and Low Carbon Forged Co–29Cr–6Mo Alloys
,”
Acta Mater.
,
55
(
4
), pp.
1309
1318
.
42.
Salpadoru
,
N. H.
, and
Flower
,
H. M.
,
1995
, “
Phase Equilibria and Transformations in a Ti–Zr–Si System
,”
Metall. Mater. Trans. A
,
26
(
2
), pp.
243
257
.
43.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), p.
981
.
44.
Bregliozzi
,
G.
,
Di Schino
,
A.
,
Kenny
,
J. M.
, and
Haefke
,
H.
,
2004
, “
Influence of Atmospheric Humidity and Grain Size on the Friction and Wear of High Nitrogen Austenitic Stainless Steel
,”
J. Mater. Sci.
,
39
(
4
), pp.
1481
1484
.
45.
Atar
,
A.
,
2013
, “
Sliding Wear Performances of 316 L, Ti6Al4V, and CoCrMo Alloys
,”
Kov. Mater.
,
51
(
3
), pp.
183
188
.https://www.researchgate.net/publication/288377955_Sliding_wear_performances_of_316_L_Ti6Al4V_and_CoCrMo_alloys
46.
Cvijović-Alagić
,
I.
,
Cvijović
,
Z.
,
Mitrović
,
S.
,
Panić
,
V.
, and
Rakin
,
M.
,
2011
, “
Wear and Corrosion Behaviour of Ti–13Nb–13Zr and Ti–6Al–4V Alloys in Simulated Physiological Solution
,”
Corros. Sci.
,
53
(
2
), pp.
796
808
.
47.
Dong
,
H.
, and
Bell
,
T.
,
2000
, “
Enhanced Wear Resistance of Titanium Surfaces by a New Thermal Oxidation Treatment
,”
Wear
,
238
(
2
), pp.
131
137
.
48.
Hutchings
,
I.
, and
Shipway
,
P.
,
2017
,
Tribology: Friction and Wear of Engineering Materials
, Butterworth-Heinemann, Oxford, UK.
49.
Qu
,
J.
,
Blau
,
P. J.
,
Watkins
,
T. R.
,
Cavin
,
O. B.
, and
Kulkarni
,
N. S.
,
2005
, “
Friction and Wear of Titanium Alloys Sliding Against Metal, Polymer, and Ceramic Counterfaces
,”
Wear
,
258
(
9
), pp.
1348
1356
.
50.
Doni
,
Z.
,
Alves
,
A. C.
,
Toptan
,
F.
,
Gomes
,
J. R.
,
Ramalho
,
A.
,
Buciumeanu
,
M.
,
Palaghian
,
L.
, and
Silva
,
F. S.
,
2013
, “
Dry Sliding and Tribocorrosion Behaviour of Hot Pressed CoCrMo Biomedical Alloy as Compared With the Cast CoCrMo and Ti6Al4V Alloys
,”
Mater. Des.
,
52
, pp.
47
57
.
You do not currently have access to this content.