Abstract

The contact damping between rough surfaces has an important influence on the wear, vibration, contact fatigue, and energy dissipation between interfaces. In this paper, based on contact theory, a tangential damping mathematical model of rough surfaces is established from the point of view of viscous contact damping energy dissipation mechanism of asperities and considering the fractal characteristics of three-dimensional topography of rough surfaces. Through the combination of micro-contact modeling and macro dynamic testing of composite beams, the analysis results show that there are important evolution rules between tangential damping and surface fractal parameters and material parameters. The nonlinear relations between them are as follows: tangential contact damping is positively correlated with normal load, load ratio, and maximum contact area of asperity, and negatively correlated with fractal roughness; tangential contact damping increases first and then decreases with the increase of three-dimensional fractal dimension. The results of computational and experimental modal analysis show that the established mathematical model is feasible for predicting tangential damping. The study of tangential contact damping between surfaces can lay a foundation for improving the performance of assembly interfaces.

References

1.
Prajapati
,
D. K.
, and
Tiwari
,
M.
,
2017
, “
Topography Analysis of Random Anisotropic Gaussian Rough Surfaces
,”
ASME J.Tribol.
,
139
(
4
), pp.
1
9
. 10.1115/1.4034960
2.
Codrignani
,
A.
,
Frohnapfel
,
B.
,
Magagnato
,
F.
,
Schreiber
,
P.
,
Schneider,
J.
, and
Gumbsch
,
P.
,
2018
, “
Numerical and Experimental Investigation of Texture Shape and Position in the Macroscopic Contact
,”
Tribol. Int.
,
122
, pp.
46
57
. 10.1016/j.triboint.2018.02.001
3.
Dai
,
D. P.
,
1986
,
Damping Technology for Reducing Vibration and Noise
,
Xi’an Jiaotong University Press
,
Xi’an, China
.
4.
Bograd
,
S.
,
Schmidt
,
A.
, and
Gaul
,
L.
,
2008
, “
Joint Damping Prediction by Thin Layer Elements
,”
2008 IMAC-XXVI: Conference & Exposition on Structural Dynamics Proceedings of IMAC 26th, Society of Experimental Mechanics Inc.
,
Bethel, CT
.
5.
Mindlin
,
R. D.
,
1949
, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
16
, pp.
259
268
.
6.
Wang
,
D.
, and
Xu
,
C.
,
2014
, “
A Tangential Stick-Slip Friction Model for Rough Interface
,”
J. Mech. Eng.
,
50
(
13
), pp.
129
134
. 10.3901/jme.2014.13.129
7.
Pan
,
W. J.
,
Li
,
X. P.
,
Guo
,
N.
,
Yang
,
Z.
, and
Sun
,
Z.
,
2017
, “
Three-Dimensional Fractal Model of Normal Contact Damping of Dry-Friction Rough Surface
,”
Adv. Mech. Eng.
,
9
, pp.
1
11
. 10.1177/1687814017692699
8.
Zhang
,
X. L.
,
Wang
,
N. S.
,
Lan
,
G. S.
,
Wen
,
S.
, and
Chen
,
2014
, “
Tangential Damping and Its Dissipation Factor Models of Joint Interfaces Based on Fractal Theory With Simulations
,”
ASME J. Tribol.
,
136
(
1
), p.
011704
. 10.1115/1.4025548
9.
Fujimoto
,
T.
,
Kagami
,
J.
,
Kawaguchi
,
T.
, and
Hatazawa
,
T.
,
2000
, “
Micro-displacement Characteristics Under Tangential Force
,”
Wear
,
241
(
2
), pp.
136
142
. 10.1016/S0043-1648(00)00385-9
10.
Nguyen
,
L. T.
, and
Möhring
,
H.-C.
,
2017
, “
Stiffness and Damping Properties of a Swing Clamp: Model and Experiment
,”
Procedia CIRP
,
58
, pp.
299
304
. 10.1016/j.procir.2017.03.190
11.
Mikhail
,
P.
, and
Popov
,
V. L.
,
2016
, “
Relaxation Damping in Contacts Under Superimposed Normal and Torsional Oscillation
,”
Phys. Mesomech.
,
19
(
2
), pp.
178
181
. 10.1134/S1029959916020107
12.
Popov
,
M.
,
Li
,
Q.
, and
Popov
,
N.
,
2015
, “
Damping in Viscoelastic Contacts Under Combined Normal and Tangential Oscillation
,”
AIP Conf. Proc.
,
1683
, pp.
1
4
. 10.1063/1.4932877
13.
Tian
,
H. L.
,
Zhao
,
M. Y.
,
Zheng
,
J. H.
,
Zhao
,
C.
,
Zhao
,
X.
,
Fang
,
Z.
, and
Zhu
,
D.
,
2015
, “
New Equations of Normal Contact Stiffness and Damping for Flexible Joint Interface
,”
J. Xi’an Jiaotong Univ.
,
49
(
1
), pp.
118
126
.
14.
Lord
,
C. E.
, and
Rongong
,
J. A.
,
2016
, “
A Tangential Microslip Model for Circularly and Elliptically Loaded Structures
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
230
(
6
), pp.
900
909
. 10.1177/0954406215608409
15.
Mi
,
C. W.
,
2017
, “
Surface Mechanics Induced Stress Disturbances in an Elastic Half-Space Subjected to Tangential Surface Loads
,”
Eur. J. Mech. A. Solids
,
65
, pp.
59
69
. 10.1016/j.euromechsol.2017.03.006
16.
Wen
,
W.
,
Jiebei
,
W.
,
Zhiqiang
,
G.
,
Weiping
,
F.
,
Weichao
,
K.
, and
Yanpeng
,
L.
,
2018
, “
A Calculation Model for Tangential Contact Damping of Machine Joint Interfaces
,”
Chin. J. Theor. App. Mech.
,
50
(
3
), pp.
189
198
.
17.
Gao
,
Z. Q.
,
Fu
,
W. P.
,
Wang
,
W.
,
Lou
,
L.
, and
Wu
,
J.
,
2018
, “
Energy Dissipation Study of Elastic-Plastic Asperity Side Contact During Normal Loading-Unloading
,”
J. Mech. Eng.
,
54
(
1
), pp.
150
160
. 10.3901/JME.2018.01.150
18.
Ren
,
Y.
, and
Beards
,
C. F.
,
1995
, “
Identification of Joint Properties of a Structure Using FRF Data
,”
J. Sound Vib.
,
186
(
4
), pp.
567
587
. 10.1006/jsvi.1995.0469
19.
Ren
,
Y.
, and
Beards
,
C. F.
,
1998
, “
Identification of Effective Linear Joints Using Coupling and Joint Identification Techniques
,”
ASME J. Vib. Acoust.
,
120
(
2
), pp.
347
359
. 10.1115/1.2893835
20.
Čelič
,
D.
, and
Boltežar
,
M.
,
2008
, “
Identification of the Dynamic Properties of Joints Using Frequency–Response Functions
,”
J. Sound Vib.
,
317
(
1–2
), pp.
158
174
. 10.1016/j.jsv.2008.03.009
21.
Mehrpouya
,
M.
,
Graham
,
E.
, and
Park
,
S. S.
,
2013
, “
FRF Based Joint Dynamics Modeling and Identification
,”
Mech. Syst. Sig. Process.
,
39
(
1–2
), pp.
265
279
. 10.1016/j.ymssp.2013.03.022
22.
Mehrpouya
,
M.
,
2014
,
Modeling and Identification of Joint Dynamics Using a Frequency-Based Method
,
University of Calgary
,
Canada
.
23.
Mehrpouya
,
M.
,
Sanati
,
M.
, and
Park
,
S. S.
,
2016
, “
Identification of Joint Dynamics in 3D Structures Through the Inverse Receptance Coupling Method
,”
Int. J. Mech. Sci.
,
105
, pp.
135
145
. 10.1016/j.ijmecsci.2015.11.007
24.
Pohrt
,
R.
, and
Li
,
Q.
,
2014
, “
Complete Boundary Element Formulation for Normal and Tangential Contact Problems
,”
Phys. Mesomech.
,
17
(
4
), pp.
334
340
. 10.1134/S1029959914040109
25.
Yan
,
W.
, and
Komvopoulos
,
K.
,
1998
, “
Contact Analysis of Elastic-Plastic Fractal Surfaces
,”
J. Appl. Phys.
,
84
(
7
), pp.
3617
3624
. 10.1063/1.368536
26.
Pan
,
W. J.
,
Li
,
X. P.
,
Wang
,
L. L.
,
Guo
,
N.
, and
Mu
,
J.
,
2017
, “
A Normal Contact Stiffness Fractal Prediction Model of dry-Friction Rough Surface and Experimental Verification
,”
Eur. J. Mech. A Solids
,
66
, pp.
94
102
. 10.1016/j.euromechsol.2017.06.010
27.
Pan
,
W. J.
,
Li
,
X. P.
,
Wang
,
L. L.
,
Mu
,
J.
, and
Yang
,
Z.
,
2018
, “
A Loading Fractal Prediction Model Developed for Dry-Friction Rough Joint Surfaces Considering Elastic–Plastic Contact
,”
Acta Mech.
,
229
(
5
), pp.
2149
2162
. 10.1007/s00707-017-2100-4
28.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
29.
Pan
,
W. J.
,
Li
,
X. P.
,
Wang
,
L. L.
,
Mu
,
J.
, and
Yang
,
Z.
,
2017
, “
Influence of Surface Topography on Three-Dimensional Fractal Model of Sliding Friction
,”
AIP Adv.
,
7
(
9
), pp.
095309
095321
. 10.1063/1.4999036
You do not currently have access to this content.