Abstract

In this investigation, a finite element (FE) model was developed to study the third body effects on the fretting wear of Hertzian contacts in the partial slip regime. An FE three-dimensional Hertzian point contact model operating in the presence of spherical third bodies was developed. Both first bodies and third bodies were modeled as elastic–plastic materials. The effect of the third body particles on contact stresses and stick-slip behavior was investigated. The influence of the number of third body particles and material properties including modulus of elasticity, hardening modulus, and yield strength were analyzed. Fretting loops in the presence and absence of wear particles were compared, and the relation between the number of cycles and the hardening process was evaluated. The results indicated that by increasing the number of particles in contact, more load was carried by the wear particles which affect the wear-rate of the material. In addition, due to the high plastic deformation of the debris, the wear particles deformed and took a platelet shape. Local stick-slip behavior over the third body particles was also observed. The results of having wear debris with different material properties than the first bodies indicated that harder wear particles have a higher contact pressure and lower slip at the location of particles which affects the wear-rate.

References

1.
Ghosh
,
A.
,
Leonard
,
B.
, and
Sadeghi
,
F.
,
2013
, “
A Stress Based Damage Mechanics Model to Simulate Fretting Wear of Hertzian Line Contact in Partial Slip
,”
Wear
,
307
(
1–2
), pp.
87
99
. 10.1016/j.wear.2013.08.008
2.
Ahmadi
,
A.
,
Sadeghi
,
F.
, and
Shaffer
,
S.
,
2018
, “
In-Situ Friction and Fretting Wear Measurements of Inconel 617 at Elevated Temperatures
,”
Wear
,
410
, pp.
110
118
. 10.1016/j.wear.2018.06.007
3.
Parikh
,
V. P.
,
Ahmadi
,
A.
,
Parekh
,
M. H.
,
Sadeghi
,
F.
, and
Pol
,
V. G.
,
2019
, “
Upcycling of Spent Lithium Cobalt Oxide Cathodes From Discarded Lithium-Ion Batteries as Solid Lubricant Additive
,”
Environ. Sci. Technol.
,
53
(
7
), pp.
3757
3763
. 10.1021/acs.est.8b07016
4.
Odfalk
,
M.
, and
Vingsbo
,
O.
,
1990
, “
Influence of Normal Force and Frequency in Fretting©
,”
Tribol. Trans.
,
33
(
4
), pp.
604
610
. 10.1080/10402009008981995
5.
Pearson
,
S. R.
,
Shipway
,
P. H.
,
Abere
,
J. O.
, and
Hewitt
,
R. A. A.
,
2013
, “
The Effect of Temperature on Wear and Friction of a High Strength Steel in Fretting
,”
Wear
,
303
(
1
), pp.
622
631
. 10.1016/j.wear.2013.03.048
6.
Qiu
,
Y.
, and
Roylance
,
B. J.
,
1992
, “
The Effect of Lubricant Additives on Fretting Wear
,”
Lubr. Eng.
,
48
, pp.
801
808
.
7.
Ahmadi
,
A.
,
Tang
,
J.
,
Pol
,
V. G.
,
Sadeghi
,
F.
, and
Mistry
,
K. K.
,
2019
, “
Binder Mediated Enhanced Surface Adhesion of Cured, Dry Solid Lubricant on Bearing Steel for Significant Friction and Wear Reduction Under High Contact Pressure
,”
Carbon
,
146
, pp.
588
596
. 10.1016/j.carbon.2019.02.044
8.
Sharma
,
A.
,
Sadeghi
,
F.
, and
Sharma
,
A.
,
2020
, “
Experimental Investigation of Fretting Wear of Coated Spring Clip and Inlet Ring in Land-Based Gas Turbines at Elevated Temperature
,”
Wear
,
446–447
, p.
203200
. 10.1016/j.wear.2020.203200
9.
Iordanoff
,
I.
,
Berthier
,
Y.
,
Descartes
,
S.
, and
Heshmat
,
H.
,
2002
, “
A Review of Recent Approaches for Modeling Solid Third Bodies
,”
ASME J. Tribol.
,
124
(
4
), pp.
725
735
. 10.1115/1.1467632
10.
Godet
,
M.
,
1984
, “
The Third-Body Approach: A Mechanical View of Wear
,”
Wear
,
100
(
1–3
), pp.
437
452
. 10.1016/0043-1648(84)90025-5
11.
Zmitrowicz
,
A.
,
2005
, “
Wear Debris: A Review of Properties and Constitutive Models
,”
J. Theor. Appl. Mech.
,
43
(
1
), pp.
3
35
.
12.
Waterhouse
,
R. B.
, and
Taylor
,
D. E.
,
1974
, “
Fretting Debris and the Delamination Theory of Wear
,”
Wear
,
29
(
3
), pp.
337
344
. 10.1016/0043-1648(74)90019-2
13.
Iwabuchi
,
A.
,
1991
, “
The Role of Oxide Particles in the Fretting Wear of Mild Steel
,”
Wear
,
151
(
2
), pp.
301
311
. 10.1016/0043-1648(91)90257-U
14.
Vincent
,
L.
,
Berthier
,
Y.
,
Floquet
,
A.
, and
Godet
,
M.
,
1984
, “
Fretting: Load Carrying Capacity of Wear Debris
,”
ASME J. Tribol.
,
106
(
2
), pp.
192
200
. 10.1115/1.3260882
15.
Lancaster
,
J. K.
,
1975
, “
Geometrical Effects on the Wear of Polymers and Carbons
,”
ASME J. Lubr. Technol.
,
97
(
2
), pp.
187
194
. https://doi.org/10.1115/1.3452553
16.
Berthier
,
Y.
,
Vincent
,
L.
, and
Godet
,
M.
,
1988
, “
Velocity Accommodation in Fretting
,”
Wear
,
125
(
1–2
), pp.
25
38
. 10.1016/0043-1648(88)90191-3
17.
Berthier
,
Y.
,
1990
, “
Experimental Evidence for Friction and Wear Modelling
,”
Wear
,
139
(
1
), pp.
77
92
. 10.1016/0043-1648(90)90210-2
18.
Heshmat
,
H.
,
1995
, “
The Quasi-Hydrodynamic Mechanism of Powder Lubrication—Part III: On Theory and Rheology of Triboparticulates
,”
Tribol. Trans.
,
38
(
2
), pp.
269
276
. 10.1080/10402009508983404
19.
Cundall
,
P. A.
, and
Strack
,
O. D. L.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Géotechnique
,
29
(
1
), pp.
47
65
. 10.1680/geot.1979.29.1.47
20.
Fillot
,
N.
,
Iordanoff
,
I.
, and
Berthier
,
Y.
,
2004
, “
A Granular Dynamic Model for the Degradation of Material
,”
ASME J. Tribol.
,
126
(
3
), pp.
606
614
. 10.1115/1.1705666
21.
Iordanoff
,
I.
,
Elkholy
,
K.
, and
Khonsari
,
M. M.
,
2008
, “
Effect of Particle Size Dispersion on Granular Lubrication Regimes
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
222
(
6
), pp.
725
739
. 10.1243/13506501JET414
22.
Linck
,
V.
,
Baillet
,
L.
, and
Berthier
,
Y.
,
2003
, “
Modeling the Consequences of Local Kinematics of the First Body on Friction and on Third Body Sources in Wear
,”
Wear
,
255
(
1–6
), pp.
299
308
. 10.1016/S0043-1648(03)00207-2
23.
Ding
,
J.
,
McColl
,
I. R.
,
Leen
,
S. B.
, and
Shipway
,
P. H.
,
2007
, “
A Finite Element Based Approach to Simulating the Effects of Debris on Fretting Wear
,”
Wear
,
263
(
1–6
), pp.
481
491
. 10.1016/j.wear.2006.12.056
24.
Kabir
,
M. A.
,
Lovell
,
M. R.
, and
Higgs
,
C. F.
,
2008
, “
Utilizing the Explicit Finite Element Method for Studying Granular Flows
,”
Tribol. Lett.
,
29
(
2
), pp.
85
94
. 10.1007/s11249-007-9285-y
25.
Cao
,
H. P.
,
Renouf
,
M.
,
Dubois
,
F.
, and
Berthier
,
Y.
,
2011
, “
Coupling Continuous and Discontinuous Descriptions to Model First Body Deformation in Third Body Flows
,”
ASME J. Tribol.
,
133
(
4
), p.
041601
. 10.1115/1.4004881
26.
Basseville
,
S.
,
Héripré
,
E.
, and
Cailletaud
,
G.
,
2011
, “
Numerical Simulation of the Third Body in Fretting Problems
,”
Wear
,
270
(
11–12
), pp.
876
887
. 10.1016/j.wear.2011.02.016
27.
Leonard
,
B. D.
,
Ghosh
,
A.
,
Sadeghi
,
F.
,
Shinde
,
S.
, and
Mittelbach
,
M.
,
2014
, “
Third Body Modeling in Fretting Using the Combined Finite-Discrete Element Method
,”
Int. J. Solids Struct.
,
51
(
6
), pp.
1375
1389
. 10.1016/j.ijsolstr.2013.12.036
28.
Ghosh
,
A.
,
Wang
,
W.
, and
Sadeghi
,
F.
,
2016
, “
An Elastic–Plastic Investigation of Third Body Effects on Fretting Contact in Partial Slip
,”
Int. J. Solids Struct.
,
81
, pp.
95
109
. 10.1016/j.ijsolstr.2015.11.013
29.
Yue
,
T.
, and
Wahab
,
M. A.
,
2016
, “
A Numerical Study on the Effect of Debris Layer on Fretting Wear
,”
Materials (Basel)
,
9
(
7
), p.
597
. 10.3390/ma9070597
30.
Arnaud
,
P.
, and
Fouvry
,
S.
,
2018
, “
A Dynamical FEA Fretting Wear Modeling Taking Into Account the Evolution of Debris Layer
,”
Wear
,
412–413
, pp.
92
108
. 10.1016/j.wear.2018.07.018
31.
Zhang
,
L.
,
Ma
,
S.
,
Liu
,
D.
,
Zhou
,
B.
, and
Markert
,
B.
,
2019
, “
Fretting Wear Modelling Incorporating Cyclic Ratcheting Deformations and the Debris Evolution for Ti-6Al-4V
,”
Tribol. Int.
,
136
, pp.
317
331
. 10.1016/j.triboint.2019.03.056
32.
Li
,
T.
,
Shi
,
J.
,
Wang
,
S.
,
Zio
,
E.
, and
Ma
,
Z.
,
2019
, “
Mesoscale Numerical Modeling for Predicting Wear Debris Generation
,”
Tribol. Lett.
,
67
(
2
), p.
38
. 10.1007/s11249-019-1150-2
33.
Leonard
,
B. D.
,
Patil
,
P.
,
Slack
,
T. S.
,
Sadeghi
,
F.
,
Shinde
,
S.
, and
Mittelbach
,
M.
,
2011
, “
Fretting Wear Modeling of Coated and Uncoated Surfaces Using the Combined Finite-Discrete Element Method
,”
ASME J. Tribol.
,
133
(
2
), p.
021601
. 10.1115/1.4003482
34.
Hills
,
D. A.
,
Sackfield
,
A.
, and
Paynter
,
R. J. H.
,
2009
, “
Simulation of Fretting Wear in Halfplane Geometries: Part 1—The Solution for Long Term Wear
,”
ASME J. Tribol.
,
131
(
3
), p.
031401
. 10.1115/1.3118785
35.
Zanoria
,
E. S.
,
Danyluk
,
S.
, and
McNallan
,
M. J.
,
1995
, “
Formation of Cylindrical Sliding-Wear Debris on Silicon in Humid Conditions and Elevated Temperatures
,”
Tribol. Trans.
,
38
(
3
), pp.
721
727
. 10.1080/10402009508983464
36.
Warhadpande
,
A.
,
Sadeghi
,
F.
,
Kotzalas
,
M. N.
, and
Doll
,
G.
,
2012
, “
Effects of Plasticity on Subsurface Initiated Spalling in Rolling Contact Fatigue
,”
Int. J. Fatigue
,
36
(
1
), pp.
80
95
. 10.1016/j.ijfatigue.2011.08.012
37.
Ahmadi
,
A.
, and
Sadeghi
,
F.
,
2019
, “
Experimental and Numerical Investigation of Torsion Fatigue of a Nickel-Based Alloy at Elevated Temperature
,”
Mater. Sci. Eng. A
,
751
, pp.
263
270
. 10.1016/j.msea.2019.02.022
38.
Reda
,
A. A.
,
Bowen
,
R.
, and
Westcott
,
V. C.
,
1975
, “
Characteristics of Particles Generated at the Interface Between Sliding Steel Surfaces
,”
Wear
,
34
(
3
), pp.
261
273
. 10.1016/0043-1648(75)90095-2
39.
Shetty
,
H. R.
,
Kosel
,
T. H.
, and
Fiore
,
N. F.
,
1982
, “
A Study of Abrasive Wear Mechanisms Using Diamond and Alumina Scratch Tests
,”
Wear
,
80
(
3
), pp.
347
376
. 10.1016/0043-1648(82)90262-9
40.
Söderberg
,
S.
,
Bryggman
,
U.
, and
McCullough
,
T.
,
1986
, “
Frequency Effects in Fretting Wear
,”
Wear
,
110
(
1
), pp.
19
34
. 10.1016/0043-1648(86)90149-3
41.
Kapoor
,
A.
, and
Johnson
,
K. L.
,
1994
, “
Plastic Ratchetting as a Mechanism of Metallic Wear
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
445
(
1924
), pp.
367
381
.
42.
Fouvry
,
S.
,
Elleuch
,
K.
, and
Simeon
,
G.
,
2002
, “
Prediction of Crack Nucleation Under Partial Slip Fretting Conditions
,”
J. Strain Anal. Eng. Des.
,
37
(
6
), pp.
549
564
. 10.1243/030932402320950152
43.
Jiang
,
J.
,
Stott
,
F. H.
, and
Stack
,
M. M.
,
1998
, “
The Role of Triboparticulates in Dry Sliding Wear
,”
Tribol. Int.
,
31
(
5
), pp.
245
256
. 10.1016/S0301-679X(98)00027-9
44.
Everitt
,
N. M.
,
Ding
,
J.
,
Bandak
,
G.
,
Shipway
,
P. H.
,
Leen
,
S. B.
, and
Williams
,
E. J.
,
2009
, “
Characterisation of Fretting-Induced Wear Debris for Ti-6Al-4V
,”
Wear
,
267
(
1–4
), pp.
283
291
. 10.1016/j.wear.2008.12.032
You do not currently have access to this content.