Abstract

Surface damages on rail became severe with the increase in the axle load and speed. Laser cladding was used to repair the local damages on rail surfaces to ensure the service performance and prolong the life of rails. In the present study, five types of cladding materials (304, 314, 2Cr13, 316L, and 434L) were clad at a small part (trapezoidal shape) of the rail disc to simulate the defected rail in the field. Vickers hardness tester, optical microscopy (OM), scanning electron microscopy (SEM), and electron-dispersive X-ray spectroscopy (EDS) were employed to investigate the service properties of the repaired rail discs. Results indicated that all these five clad rail discs had lower wear-rates than the unclad rail disc. The wear-rates decreased with the increase in the initial hardness of the clad layer. Cracks with large angles mainly propagated along the boundary at the front edge, while at the rear edge, the crack morphology was closely related to the hardness of clad layer. 434L would induce the minimum wear loss and the modest rolling contact fatigue (RCF) of the repaired rail disc, which could be the potential cladding material for repairing the damaged rail.

References

1.
Li
,
S.
,
Qian
,
W. H.
,
Xiao
,
Y. Z.
, and
Sheng
,
Q. J.
,
2005
, “
Effect of Carbon Content on the Microstructure and the Cracking Susceptibility of Fe-Based Laser-Clad Layer
,”
Appl. Surf. Sci.
,
240
(
1
), pp.
63
70
.
2.
Xu
,
G. J.
,
Muneharu
,
K.
,
Liu
,
Z. J.
, and
Zhang
,
H.
,
2006
, “
Characteristics of Ni-Based Coating Layer Formed by Laser and Plasma Cladding Processes
,”
Mat. Sci. Eng. A
,
417
(
1
), pp.
63
72
.
3.
Khanna
,
A. S.
,
Kumari
,
S.
,
Kanungo
,
S.
, and
Gasser
,
A.
,
2009
, “
Hard Coatings Based on Thermal Spray and Laser Cladding
,”
Int. J. Refract. Met. Hard Mater.
,
27
(
2
), pp.
485
491
.
4.
Niederhauser
,
S.
, and
Birger
,
K.
,
2005
, “
Fatigue Behaviour of Co-Cr Laser Clad Steel Plates for Railway Applications
,”
Wear
,
258
(
7–8
), pp.
1156
1164
.
5.
Zhang
,
D. W.
, and
Zhang
,
X. P.
,
2005
, “
Laser Cladding of Stainless Steel With Ni–Cr3C2 and Ni–WC for Improving Erosive–Corrosive Wear Performance
,”
Surf. Coat. Technol.
,
190
(
2
), pp.
212
217
.
6.
Baldridge
,
T.
,
Poling
,
G.
,
Foroozmehr
,
E.
,
Kovacevic
,
R.
,
Metz
,
T.
,
Kadekar
,
V.
, and
Gupta
,
M. C.
,
2013
, “
Laser Cladding of Inconel 690 on Inconel 600 Superalloy for Corrosion Protection in Nuclear Applications
,”
Opt. Laser. Eng.
,
51
(
2
), pp.
180
184
.
7.
Koclęga
,
D.
,
Radziszewska
,
A.
,
Dymek
,
S.
,
Morgiel
,
J.
,
Maj
,
Ł.
, and
Kranzmann
,
A.
,
2020
, “
Improvement of Corrosion Resistance of 13CrMo4-5 Steel by Ni-Based Laser Cladding Coatings
,”
J. Mater. Eng. Perform.
,
29
(
6
), pp.
3702
3713
.
8.
Li-Yan
,
L.
,
Yu
,
Z.
,
Yun-Jie
,
J.
,
Yan
,
L.
,
Hong-Fang
,
T.
,
Yu-Jun
,
C.
, and
Cheng-Xin
,
L.
,
2020
, “
High Speed Laser Clad Ti-Cu-NiCoCrAlTaY Burn Resistant Coating and Its Oxidation Behavior
,”
Surf. Coat. Technol.
,
392
, p.
125697
.
9.
Kattire
,
P.
,
Paul
,
S.
,
Singh
,
R.
, and
Yan
,
W. Y.
,
2015
, “
Experimental Characterization of Laser Cladding of CPM 9 V on H13 Tool Steel for Die Repair Applications
,”
J. Manuf. Processes
,
20
, pp.
492
499
.
10.
Hu
,
D. W.
,
Liu
,
Y.
,
Chen
,
H.
, and
Wang
,
M. C.
,
2020
, “
Microstructure and Wear Resistance of Ni-Based Tungsten Carbide Coating by Laser Cladding on Tunnel Boring Machine Cutter Ring
,”
Surf. Coat. Technol.
,
404
, p.
126432
.
11.
Wang
,
Y. P.
,
Ding
,
H. H.
,
Zou
,
Q.
,
Xiao
,
F.
,
Zhang
,
X. F.
,
Wang
,
W. J.
,
Guo
,
J.
, and
Liu
,
Q. Y.
,
2020
, “
Research Progress on Rolling Contact Fatigue of Railway Wheel Treads
,”
Surf. Technol.
,
49
(
5
), pp.
120
128
.
12.
Zhong
,
W.
,
Hu
,
J. J.
,
Shen
,
P.
,
Wang
,
C. Y.
, and
Lius
,
Q. Y.
,
2011
, “
Experimental Investigation Between Rolling Contact Fatigue and Wear of High-Speed and Heavy-Haul Railway and Selection of Rail Material
,”
Wear
,
271
(
9
), pp.
2485
2493
.
13.
Hu
,
Y.
,
Zhou
,
L.
,
Ding
,
H. H.
,
Lewis
,
R.
,
Liu
,
Q. Y.
,
Guo
,
J.
, and
Wang
,
W. J.
,
2021
, “
Microstructure Evolution of Railway Pearlitic Wheel Steels Under Rolling-Sliding Contact Loading
,”
Tribol. Int.
,
154
, p.
106685
.
14.
Hu
,
Y.
,
Guo
,
L. C.
,
Maiorino
,
M.
,
Liu
,
J. P.
,
Ding
,
H. H.
,
Lewis
,
R.
,
Meli
,
E.
,
Rindi
,
A.
,
Liu
,
Q. Y.
, and
Wang
,
W. J.
,
2020
, “
Comparison of Wear and Rolling Contact Fatigue Behaviours of Bainitic and Pearlitic Rails Under Various Rolling-Sliding Conditions
,”
Wear
,
460–461
, p.
203455
.
15.
Liu
,
Q. Y.
,
Zhang
,
B.
, and
Zhou
,
Z. R.
,
2003
, “
An Experimental Study of Rail Corrugation
,”
Wear
,
255
(
2
), pp.
1121
1126
.
16.
Wang
,
W. J.
,
Lewis
,
R.
,
Yang
,
B.
,
Guo
,
L. C.
,
Liu
,
Q. Y.
, and
Zhu
,
M. H.
,
2016
, “
Wear and Damage Transitions of Wheel and Rail Materials Under Various Contact Conditions
,”
Wear
,
362
, pp.
146
152
.
17.
Chen
,
J. Q.
,
Takezono
,
S.
,
Li
,
G. X.
, and
Tanaka
,
T.
,
1995
, “
Effect of Laser Cladding on Fatigue Strength of an Alloy Steel
,”
J. Soc. Mater. Sci.
,
44
(
498
), pp.
343
347
.
18.
Wang
,
W. J.
,
Hu
,
J.
,
Guo
,
J.
,
Liu
,
Q. Y.
, and
Zhu
,
M. H.
,
2014
, “
Effect of Laser Cladding on Wear and Damage Behaviors of Heavy-Haul Wheel/Rail Materials
,”
Wear
,
311
(
1
), pp.
130
136
.
19.
Wang
,
W. J.
,
Fu
,
Z. K.
,
Guo
,
J.
,
Zhang
,
Y. Q.
,
Liu
,
Q. Y.
, and
Zhu
,
M. H.
,
2016
, “
Investigation on Wear Resistance and Fatigue Damage of Laser Cladding Coating on Wheel and Rail Materials Under the Oil Lubrication Condition
,”
Tribol. Trans.
,
59
(
5
), pp.
810
817
.
20.
Fu
,
Z. K.
,
Ding
,
H. H.
,
Wang
,
W. J.
,
Liu
,
Q. Y.
,
Guo
,
J.
, and
Zhu
,
M. H.
,
2015
, “
Investigation on Microstructure and Wear Characteristic of Laser Cladding Fe-Based Alloy on Wheel/Rail Materials
,”
Wear
,
330
, pp.
592
599
.
21.
Yuan
,
W. Y.
,
Li
,
R. F.
,
Chen
,
Z. H.
,
Gu
,
J. Y.
, and
Tian
,
Y. T.
,
2021
, “
A Comparative Study on Microstructure and Properties of Traditional Laser Cladding and High-Speed Laser Cladding of Ni45 Alloy Coatings
,”
Surf. Coat. Technol.
,
405
, p.
126582
.
22.
Zhang
,
M. M.
,
Bai
,
P. K.
, and
Liu
,
B.
,
2017
, “
Study on Parameters of Laser Cladding Stainless Steel Alloy Power With 45 Steel Tubes
,”
Chin. Foundr.
,
66
(
12
), pp.
1308
1312
.
23.
Lewis
,
R.
,
Magel
,
E.
,
Wang
,
W. J.
,
Olofsson
,
U.
,
Lewis
,
S.
,
Slatter
,
T.
, and
Beagles
,
A.
,
2017
, “
Towards a Standard Approach for the Wear Testing of Wheel and Rail Materials
,”
Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit
,
231
(
7
), pp.
760
774
.
24.
Mu
,
X. P.
,
Wang
,
W. J.
,
Zhu
,
Y.
,
Liu
,
Q. Y.
,
Guo
,
J.
, and
Ding
,
H. H.
,
2020
, “
Effects of Two Laser Cladding Coatings on Wear and Damage Properties of Wheel/Rail Materials
,”
Tribol.
,
40
(
2
), pp.
225
233
.
25.
Lewis
,
S. R.
,
Lewis
,
R.
, and
Fletcher
,
D. I.
,
2015
, “
Assessment of Laser Cladding as an Option for Repairing/Enhancing Rails
,”
Wear
,
330
, pp.
581
591
.
26.
Lai
,
Q.
,
Abrahams
,
R.
,
Yan
,
W. Y.
,
Qiu
,
C.
,
Mutton
,
P.
,
Paradowska
,
A.
,
Fang
,
X. Y.
,
Soodi
,
M.
, and
Wu
,
X. H.
,
2018
, “
Effects of Preheating and Carbon Dilution on Material Characteristics of Laser-Clad Hypereutectoid Rail Steels
,”
Mat. Sci. Eng. A
,
712
, pp.
548
563
.
27.
Clare
,
A.
,
Oyelola
,
O.
,
Folkes
,
J.
, and
Farayibi
,
P.
,
2012
, “
Laser Cladding for Railway Repair and Preventative Maintenance
,”
J. Laser Appl.
,
24
(
3
), pp.
240
249
.
28.
Seo
,
J. W.
,
Kim
,
J. C.
,
Kwon
,
S. J.
, and
Jun
,
H. K.
,
2019
, “
Effects of Laser Cladding for Repairing and Improving Wear of Rails
,”
Int. J. Precis. Eng. Manuf.
,
20
(
7
), pp.
1207
1217
.
29.
Wang
,
W. J.
,
Guo
,
J.
,
Liu
,
Q. Y.
, and
Zhu
,
M. H.
,
2014
, “
Effect of Laser Quenching on Wear and Damage of Heavy-Haul Wheel/Rail Materials
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
228
(
1
), pp.
114
122
.
30.
Ding
,
H. H.
,
Fu
,
Z. K.
,
Wang
,
W. J.
,
Guo
,
J.
,
Liu
,
Q. Y.
, and
Zhu
,
M. H.
,
2015
, “
Investigation on the Effect of Rotational Speed on Rolling Wear and Damage Behaviors of Wheel/Rail Materials
,”
Wear
,
330
, pp.
563
570
.
31.
Guo
,
H. M.
,
Wang
,
Q.
,
Wang
,
W. J.
,
Guo
,
J.
,
Liu
,
Q. Y.
, and
Zhu
,
M. H.
,
2015
, “
Investigation on Wear and Damage Performance of Laser Cladding Co-Based Alloy on Single Wheel or Rail Material
,”
Wear
,
328–329
, pp.
329
337
.
32.
Su
,
C. R.
,
Shi
,
L. B.
,
Wang
,
W. J.
,
Wang
,
D. Z.
,
Cai
,
Z. B.
,
Liu
,
Q. Y.
, and
Zhou
,
Z. R.
,
2019
, “
Investigation on the Rolling Wear and Damage Properties of Laser Dispersed Quenched Rail Materials Treated With Different Ratios
,”
Tribol Int.
,
135
, pp.
488
499
.
33.
Kuminek
,
T.
,
Aniołek
,
K.
, and
Młyńczak
,
J.
,
2015
, “
A Numerical Analysis of the Contact Stress Distribution and Physical Modelling of Abrasive Wear in the Tram Wheel-Frog System
,”
Wear
,
328
, pp.
177
185
.
34.
Eden
,
H. C.
,
Garnham
,
J. E.
, and
Davis
,
C. L.
,
2005
, “
Influential Microstructural Changes on Rolling Contact Fatigue Crack Initiation in Pearlitic Rail Steels
.”
Mater. Sci. Technol
,
21
(
6
), pp.
623
629
.
35.
Zhu
,
Y.
,
Yang
,
Y.
,
Mu
,
X.
,
Wang
,
W.
,
Yao
,
Z.
, and
Yang
,
H.
,
2019
, “
Study on Wear and RCF Performance of Repaired Damage Railway Wheels: Assessing Laser Cladding to Repair Local Defects on Wheels
,”
Wear
,
430–431
, pp.
126
136
.
36.
Guo
,
L. C.
,
Zhu
,
W. T.
,
He
,
C. G.
,
Ma
,
L.
,
Wang
,
W. J.
, and
Liu
,
Q. Y.
,
2018
, “
Analysis on Wear and Damage Characteristics of U75V Rail Under Different Slip Ratio Conditions
,”
J. Mech. Eng.
,
54
(
4
), pp.
167
175
.
37.
Wang
,
W. J.
,
Lewis
,
R.
,
Evans
,
M. D.
, and
Liu
,
Q. Y.
,
2017
, “
Influence of Different Application of Lubricants on Wear and Pre-Existing Rolling Contact Fatigue Cracks of Rail Materials
,”
Tribol. Lett.
,
65
(
2
), pp.
1
15
.
You do not currently have access to this content.