Abstract

Selective laser melting (SLM) is an emerging additive manufacturing (AM) technology for fabrication of complex lightweight components along with improved mechanical properties. However, the properties are highly influenced by the continual heating and cooling during deposition, variation in local temperature, size, and shape of melt pool, and solidification growth rate. Therefore, postprocessing is very often required to control various properties of additive manufactured components. The present work investigates the influence of various postprocessing methods such as heat treatment and electric discharge alloying (EDA) on ambient and elevated temperature wear behavior of selective laser melted AlSi10Mg alloy and compared with its tribological behavior with cast AlSi10Mg. The dry wear tests were conducted using a pin on disk (POD) tribometer with EN-31 as counter body. The EDA treated SLM AlSi10Mg showed the least wear-rate and coefficient of friction (COF) at both ambient and elevated temperatures (1.05 × 10−4 mm3/Nm and 0.434 and 3.12 × 10−5 mm3/Nm and 0.531, respectively) due to its higher hardness (189.8 HV) as compared with other samples. The wear-rate and COF of cast specimen are found to be highest among all specimens at both ambient and elevated temperatures (1.34 × 10−4 mm3/Nm and 0.528 and 4.49 × 10−5 mm3/Nm and 0.724, respectively). Lower wear-rate and higher COF are observed at elevated temperature due to the excessive formation of wear-resistant oxides (Al2O3, SiO2, and MgO) and glaze layers for all samples compared with ambient temperature wear behaviors of its counterparts. Abrasive wear, adhesive wear, oxidation wear, and surface delamination are the prominent wear mechanisms observed for ambient and elevated temperatures for all the specimens.

References

1.
Herzog
,
D.
,
Seyda
,
V.
,
Wycisk
,
E.
, and
Emmelmann
,
C.
,
2016
, “
Additive Manufacturing of Metals
,”
Acta Mater.
,
117
, pp.
371
392
.
2.
Mitchell
,
A.
,
Lafont
,
U.
,
Hołyńska
,
M.
, and
Semprimoschnig
,
C.
,
2018
, “
Additive Manufacturing—A Review of 4D Printing and Future Applications
,”
Addit. Manuf.
,
24
, pp.
606
626
.
3.
Ngo
,
T. D.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K. T. Q.
, and
Hui
,
D.
,
2018
, “
Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges
,”
Compos. Part B
,
143
, pp.
172
196
.
4.
Aggarwal
,
A.
,
Patel
,
S.
, and
Kumar
,
A.
,
2019
, “
Selective Laser Melting of 316L Stainless Steel: Physics of Melting Mode Transition and Its Influence on Microstructural and Mechanical Behavior
,”
JOM
,
71
(
3
), pp.
1105
1116
.
5.
Roopavath
,
U. K.
,
Malferrari
,
S.
,
Van Haver
,
A.
,
Verstreken
,
F.
,
Rath
,
S. N.
, and
Kalaskar
,
D. M.
,
2019
, “
Optimization of Extrusion Based Ceramic 3D Printing Process for Complex Bony Designs
,”
Mater. Des.
,
162
, pp.
263
270
.
6.
Singh
,
R.
,
Gupta
,
A.
,
Tripathi
,
O.
,
Srivastava
,
S.
,
Singh
,
B.
,
Awasthi
,
A.
,
Rajput
,
S. K.
,
Sonia
,
P.
,
Singhal
,
P.
, and
Saxena
,
K. K.
,
2020
, “
Powder Bed Fusion Process in Additive Manufacturing: An Overview Materials Today: Proceedings Powder Bed Fusion Process in Additive Manufacturing: An Overview
,”
Mater. Today Proc.
,
26
(
Part 2
), pp.
3058
3070
.
7.
Spierings
,
A. B.
,
Dawson
,
K.
,
Dumitraschkewitz
,
P.
,
Pogatscher
,
S.
, and
Wegener
,
K.
,
2018
, “
Microstructure Characterization of SLM-Processed Al-Mg-Sc-Zr Alloy in the Heat Treated and HIPed Condition
,”
Addit. Manuf.
,
20
, pp.
173
181
.
8.
Croteau
,
J. R.
,
Griffiths
,
S.
,
Rossell
,
M. D.
,
Leinenbach
,
C.
,
Kenel
,
C.
,
Jansen
,
V.
,
Seidman
,
D. N.
,
Dunand
,
D. C.
, and
Vo
,
N. Q.
,
2018
, “
Microstructure and Mechanical Properties of Al-Mg-Zr Alloys Processed by Selective Laser Melting
,”
Acta Mater.
,
153
, pp.
35
44
.
9.
Miller
,
W. S.
,
Zhuang
,
L.
,
Bottema
,
J.
,
Wittebrood
,
A. J.
,
De Smet
,
P.
,
Haszler
,
A.
, and
Vieregge
,
A.
,
2000
, “
Recent Development in Aluminium Alloys for the Automotive Industry
,”
Mater. Sci. Eng. A
,
280
(
1
), pp.
37
49
.
10.
García-Moreno
,
F.
,
2016
, “
Commercial Applications of Metal Foams: Their Properties and Production
,”
Materials
,
9
(
2
), pp.
20
24
.
11.
Aboulkhair
,
N. T.
,
Simonelli
,
M.
,
Parry
,
L.
,
Ashcroft
,
I.
,
Tuck
,
C.
, and
Hague
,
R.
,
2019
, “
3D Printing of Aluminium Alloys: Additive Manufacturing of Aluminium Alloys Using Selective Laser Melting
,”
Prog. Mater. Sci.
,
106
, p.
100578
.
12.
Thijs
,
L.
,
Kempen
,
K.
,
Kruth
,
J. P.
, and
Van Humbeeck
,
J.
,
2013
, “
Fine-Structured Aluminium Products With Controllable Texture by Selective Laser Melting of Pre-Alloyed AlSi10Mg Powder
,”
Acta Mater.
,
61
(
5
), pp.
1809
1819
.
13.
Wang
,
M.
,
Song
,
B.
,
Wei
,
Q.
,
Zhang
,
Y.
, and
Shi
,
Y.
,
2019
, “
Effects of Annealing on the Microstructure and Mechanical Properties of Selective Laser Melted AlSi7Mg Alloy
,”
Mater. Sci. Eng., A
,
739
, pp.
463
472
.
14.
Wu
,
J.
,
Wang
,
X. Q.
,
Wang
,
W.
,
Attallah
,
M. M.
, and
Loretto
,
M. H.
,
2016
, “
Microstructure and Strength of Selectively Laser Melted AlSi10Mg
,”
Acta Mater.
,
117
, pp.
311
320
.
15.
Prashanth
,
K. G.
,
Scudino
,
S.
,
Klauss
,
H. J.
,
Surreddi
,
K. B.
,
Löber
,
L.
,
Wang
,
Z.
,
Chaubey
,
A. K.
,
Kühn
,
U.
, and
Eckert
,
J.
,
2014
, “
Microstructure and Mechanical Properties of Al-12Si Produced by Selective Laser Melting: Effect of Heat Treatment
,”
Mater. Sci. Eng., A
,
590
, pp.
153
160
.
16.
Prashanth
,
K. G.
,
Scudino
,
S.
, and
Eckert
,
J.
,
2017
, “
Defining the Tensile Properties of Al-12Si Parts Produced by Selective Laser Melting
,”
Acta Mater.
,
126
, pp.
25
35
.
17.
Trevisan
,
F.
,
Calignano
,
F.
,
Lorusso
,
M.
,
Pakkanen
,
J.
,
Aversa
,
A.
,
Ambrosio
,
E. P.
,
Lombardi
,
M.
,
Fino
,
P.
, and
Manfredi
,
D.
,
2017
, “
On the Selective Laser Melting (SLM) of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties
,”
Materials
,
10
(
1
), p.
76
.
18.
Manfredi
,
D.
,
Calignano
,
F.
,
Krishnan
,
M.
,
Canali
,
R.
,
Ambrosio
,
E. P.
, and
Atzeni
,
E.
,
2013
, “
From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed Through Direct Metal Laser Sintering
,”
Materials
,
6
(
3
), pp.
856
869
.
19.
Kempen
,
K.
,
Thijs
,
L.
,
Van Humbeeck
,
J.
, and
Kruth
,
J. P.
,
2012
, “
Mechanical Properties of AlSi10Mg Produced by Selective Laser Melting
,”
Phys. Procedia
,
39
, pp.
439
446
.
20.
Read
,
N.
,
Wang
,
W.
,
Essa
,
K.
, and
Attallah
,
M. M.
,
2015
, “
Selective Laser Melting of AlSi10Mg Alloy: Process Optimisation and Mechanical Properties Development
,”
Mater. Des.
,
65
, pp.
417
424
.
21.
Brandl
,
E.
,
Heckenberger
,
U.
,
Holzinger
,
V.
, and
Buchbinder
,
D.
,
2012
, “
Additive Manufactured AlSi10Mg Samples Using Selective Laser Melting (SLM): Microstructure, High Cycle Fatigue, and Fracture Behavior
,”
Mater. Des.
,
34
, pp.
159
169
.
22.
Lorusso
,
M.
,
Aversa
,
A.
,
Manfredi
,
D.
,
Calignano
,
F.
,
Ambrosio
,
E. P.
,
Ugues
,
D.
, and
Pavese
,
M.
,
2016
, “
Tribological Behavior of Aluminum Alloy AlSi10Mg-TiB2 Composites Produced by Direct Metal Laser Sintering (DMLS)
,”
J. Mater. Eng. Perform.
,
25
(
8
), pp.
3152
3160
.
23.
Kang
,
N.
,
Coddet
,
P.
,
Liao
,
H.
,
Baur
,
T.
, and
Coddet
,
C.
,
2016
, “
Wear Behavior and Microstructure of Hypereutectic Al-Si Alloys Prepared by Selective Laser Melting
,”
Appl. Surf. Sci.
,
378
, pp.
142
149
.
24.
Rathod
,
H. J.
,
Nagaraju
,
T.
,
Prashanth
,
K. G.
, and
Ramamurty
,
U.
,
2019
, “
Tribological Properties of Selective Laser Melted Al–12Si Alloy
,”
Tribol. Int.
,
137
, pp.
94
101
.
25.
Kang
,
N.
, and
El Mansori
,
M.
,
2020
, “
A New Insight on Induced-Tribological Behaviour of Hypereutectic Al-Si Alloys Manufactured by Selective Laser Melting
,”
Tribol. Int.
,
149
, p.
105751
.
26.
Yan
,
Q.
,
Song
,
B.
, and
Shi
,
Y.
,
2020
, “
Comparative Study of Performance Comparison of AlSi10Mg Alloy Prepared by Selective Laser Melting and Casting
,”
J. Mater. Sci. Technol.
,
41
, pp.
199
208
.
27.
Kang
,
N.
,
Coddet
,
P.
,
Chen
,
C.
,
Wang
,
Y.
,
Liao
,
H.
, and
Coddet
,
C.
,
2016
, “
Microstructure and Wear Behavior of In-Situ Hypereutectic Al-High Si Alloys Produced by Selective Laser Melting
,”
Mater. Des.
,
99
, pp.
120
126
.
28.
Aboulkhair
,
N. T.
,
Maskery
,
I.
,
Tuck
,
C.
,
Ashcroft
,
I.
, and
Everitt
,
N. M.
,
2016
, “
The Microstructure and Mechanical Properties of Selectively Laser Melted AlSi10Mg: The Effect of a Conventional T6-Like Heat Treatment
,”
Mater. Sci. Eng. A
,
667
, pp.
139
146
.
29.
Prashanth
,
K. G.
,
Debalina
,
B.
,
Wang
,
Z.
,
Gostin
,
P. F.
,
Gebert
,
A.
,
Calin
,
M.
,
Kühn
,
U.
,
Kamaraj
,
M.
,
Scudino
,
S.
, and
Eckert
,
J.
,
2014
, “
Tribological and Corrosion Properties of Al-12Si Produced by Selective Laser Melting
,”
J. Mater. Res.
,
29
(
17
), pp.
2044
2054
.
30.
Li
,
W.
,
Li
,
S.
,
Liu
,
J.
,
Zhang
,
A.
,
Zhou
,
Y.
,
Wei
,
Q.
,
Yan
,
C.
, and
Shi
,
Y.
,
2016
, “
Effect of Heat Treatment on AlSi10Mg Alloy Fabricated by Selective Laser Melting: Microstructure Evolution, Mechanical Properties and Fracture Mechanism
,”
Mater. Sci. Eng. A
,
663
, pp.
116
125
.
31.
Liew
,
P. J.
,
Yap
,
C. Y.
,
Wang
,
J.
,
Zhou
,
T.
, and
Yan
,
J.
,
2020
, “
Surface Modification and Functionalization by Electrical Discharge Coating: A Comprehensive Review
,”
Int. J. Extrem. Manuf.
,
2
(
1
), p.
012004
.
32.
Philip
,
J. T.
,
Kumar
,
D.
,
Mathew
,
J.
, and
Kuriachen
,
B.
,
2020
, “
Tribological Investigations of Wear Resistant Layers Developed Through EDA and WEDA Techniques on Ti6Al4V Surfaces: Part I—Ambient Temperature
,”
Wear
,
458–459
, p.
203409
.
33.
Philip
,
J. T.
,
Kumar
,
D.
,
Mathew
,
J.
, and
Kuriachen
,
B.
,
2021
, “
Tribological Investigations of Wear Resistant Layers Developed Through EDA and WEDA Techniques on Ti6Al4V Surfaces: Part II—High Temperature
,”
Wear
,
466–467
, p.
203540
.
34.
Philip
,
J. T.
,
Kumar
,
D.
,
Mathew
,
J.
, and
Kuriachen
,
B.
,
2020
, “
Experimental Investigations on the Tribological Performance of Electric Discharge Alloyed Ti–6Al–4V at 200–600 °C
,”
ASME J. Tribol.
,
142
(
6
), p.
061702
.
35.
Stott
,
F. H.
, and
Wood
,
G. C.
,
1978
, “
The Influence of Oxides on the Friction and Wear of Alloys
,”
Tribol. Int.
,
11
(
4
), pp.
211
218
.
36.
Yilmaz
,
O.
, and
Buytoz
,
S.
,
2001
, “
Abrasive Wear of Al2O3-Reinforced Aluminium-Based MMCs
,”
Compos. Sci. Technol.
,
61
(
16
), pp.
2381
2392
.
37.
Fehringer
,
G.
, and
Clasen
,
R.
,
2005
,
Advances in Ceramic Coatings and Ceramic-Metal Systems: Ceramic Engineering and Science Proceedings
,
D.
Zhu
and
K.
Plucknett
, eds., Vol.
26
,
John Wiley & Sons, Ltd.
,
New York
, pp.
211
218
.
38.
Liu, X.
tong
,
Wang, D.
dong
,
Wu, Y.
kang
,
Yang
,
Z.
,
Li
,
D.
, and
Shen
,
D.
,
2020
, “
Investigation on Corrosion and Wear Resistance of MgO-Al2O3 Composite Coating Prepared by Plasma Electrolytic Oxidation
,”
Int. J. Appl. Ceram. Technol.
,
17
(
3
), pp.
1017
1025
.
39.
Mohan
,
S.
,
Gautam
,
G.
,
Kumar
,
N.
,
Gautam
,
R. K.
,
Mohan
,
A.
, and
Jaiswal
,
A. K.
,
2016
, “
Dry Sliding Wear Behavior of Al-SiO2 Composites
,”
Compos. Interfaces
,
23
(
6
), pp.
493
502
.
You do not currently have access to this content.