Abstract

An innovative approach was adopted for fabricating zirconia toughened alumina (ZTA)-MoS2 self-lubricating ceramic composites with the inclusion of hydrothermally synthesized nano MoS2 through the micropores of perforated ZTA ceramics. This method avoided the exposure of MoS2 in high-temperature environment due to its in-sensitiveness during traditional sintering techniques. Different weight percentages (wt%: 0, 5, 10, and 15) of graphite were incorporated to produce porous ZTA ceramics with the help of cold press sintering followed by insertion of nano MoS2 into the matrices. Best tribological characteristics were obtained with 10 wt% graphite-ZTA-MoS2 specimen which offered an improvement of ∼66% in coefficient of friction (COF) and ∼96% in specific wear rate when dry sliding tests were carried out against silicon nitride (Si3N4) in high vacuum (5.0 × 10−4 mbar). Nano MoS2 was sheared off at the contacting interface during sliding under load which showed a good tribological characteristics of the composite. Delamination was found as the dominating wear mechanism in ZTA-MoS2 composites during wear tests.

References

1.
Zhu
,
T.
,
Xie
,
Z.
,
Han
,
Y.
,
Li
,
S.
,
Li
,
Y.
,
An
,
D.
, and
Luo
,
X.
,
2018
, “
A Novel Approach to Improve Flexural Strength of Al2O3-20 wt% ZrO2 Composites by Oscillatory Pressure Sintering
,”
J. Am. Ceram. Soc.
,
101
(
4
), pp.
1397
1401
. 10.1111/jace.15341
2.
Naslain
,
R.
,
Guette
,
A.
,
Rebillat
,
F.
,
Pailler
,
R.
,
Langlais
,
F.
, and
Bourrat
,
X.
,
2004
, “
Boron-Bearing Species in Ceramic Matrix Composites for Long-Term Aerospace Applications
,”
J. Solid State Chem.
,
177
(
2
), pp.
449
456
. 10.1016/j.jssc.2003.03.005
3.
Huang
,
S. G.
,
Vleugels
,
J.
,
Li
,
L.
,
Van der Biest
,
O.
, and
Wang
,
P. L.
,
2005
, “
Composition Design and Mechanical Properties of Mixed (Ce, Y)-TZP Ceramics Obtained From Coated Starting Powders
,”
J. Eur. Ceram. Soc.
,
25
(
13
), pp.
3109
3115
. 10.1016/j.jeurceramsoc.2004.07.003
4.
Valefi
,
M.
,
de Rooij
,
M.
,
Schipper
,
D. J.
, and
Winnubst
,
L.
,
2011
, “
High-Temperature Tribological and Self-Lubricating Behavior of Copper Oxide-Doped Y-TZP Composite Sliding Against Alumina
,”
J. Am. Ceram. Soc.
,
94
(
12
), pp.
4426
4434
. 10.1111/j.1551-2916.2011.04899.x
5.
Su
,
Y.
,
Song
,
J.
,
Zhang
,
Y.
,
Fan
,
H.
, and
Hu
,
L.
,
2019
, “
Influence of Fiber Diameters on Fracture and Tribological Properties of Al2O3/MoS2 Fibrous Monolithic Ceramic
,”
Tribol. Int.
,
138
, pp.
32
39
. 10.1016/j.triboint.2019.05.018
6.
Mazumder
,
S.
,
Barad
,
B. B.
,
Show
,
B. K.
, and
Mandal
,
N.
,
2019
, “
Tribological Property Enhancement of 3Y-TZP Ceramic by the Combined Effect of CaF2 and MgO Phases
,”
Ceram. Int.
,
45
(
10
), pp.
13447
13455
. 10.1016/j.ceramint.2019.04.044
7.
Mazumder
,
S.
,
Kumar
,
O. P.
,
Kotnees
,
D. K.
, and
Mandal
,
N.
,
2019
, “
Tribological Influences of CuO Into 3Y-TZP Ceramic Composite in Conformal Contact
,”
ASME J. Tribol.
,
141
(
3
), p.
031606
. 10.1115/1.4041894
8.
Mazumder
,
S.
,
Kumar
,
A.
,
Singh
,
B. K.
,
Roy
,
H.
, and
Mandal
,
N.
,
2019
, “
Tribological Investigation of MgO/Al2O3 Ceramic Composite With The Inclusion of Nano CuO in Dry Abrasive Wear Test
,”
Mater. Res. Express.
,
6
(
8
), p.
085086
. 10.1088/2053-1591/ab2283
9.
Kim
,
S. H.
,
2014
, “
Influence of Sulfides on the Tribological Properties of Composites Produced by Pulse Electric Current Sintering
,”
Int. J. Miner. Metall. Mater.
,
21
(
1
), pp.
95
103
. 10.1007/s12613-014-0871-3
10.
Song
,
J.
,
Zhang
,
Y.
,
Su
,
Y.
,
Fang
,
Y.
, and
Hu
,
L.
,
2015
, “
Influence of Structural Parameters and Compositions on the Tribological Properties of Alumina/Graphite Laminated Composites
,”
Wear
,
338
, pp.
351
361
. 10.1016/j.wear.2015.07.017
11.
Cura
,
M. E.
,
Liu
,
X. W.
,
Kanerva
,
U.
,
Varjus
,
S.
,
Kivioja
,
A.
,
Söderberg
,
O.
, and
Hannula
,
S. P.
,
2015
, “
Friction Behavior of Alumina/Molybdenum Composites and Formation of MoO3−x Phase at 400 °C
,”
Tribol. Int.
,
87
, pp.
23
31
. 10.1016/j.triboint.2015.02.010
12.
Donnet
,
C.
,
Le Mogne
,
T.
, and
Martin
,
J. M.
,
1993
, “
Superlow Friction of Oxygen-Free MoS2 Coatings in Ultrahigh Vacuum
,”
Surf. Coat. Technol.
,
62
(
1–3
), pp.
406
411
. 10.1016/0257-8972(93)90275-S
13.
Colas
,
G.
,
Saulot
,
A.
,
Regis
,
E.
, and
Berthier
,
Y.
,
2015
, “
Investigation of Crystalline and Amorphous MoS2 Based Coatings: Towards Developing New Coatings for Space Applications
,”
Wear
,
330
, pp.
448
460
. 10.1016/j.wear.2015.01.011
14.
Li
,
W.
,
Yang
,
Y.
,
Weber
,
J. K.
,
Zhang
,
G.
, and
Zhou
,
R.
,
2016
, “
Tunable, Strain-Controlled Nanoporous MoS2 Filter for Water Desalination
,”
ACS Nano.
,
10
(
2
), pp.
1829
1835
. 10.1021/acsnano.5b05250
15.
Liu
,
F.
,
Zhou
,
Y.
,
Liu
,
D.
,
Chen
,
X.
,
Yang
,
C.
, and
Zhou
,
L.
,
2017
, “
Thermodynamic Calculations and Dynamics Simulation on Thermal-Decomposition Reaction of MoS2 and Mo2S3 Under Vacuum
,”
Vacuum
,
139
, pp.
143
152
. 10.1016/j.vacuum.2017.03.005
16.
Ouyang
,
J. H.
,
Li
,
Y. F.
,
Wang
,
Y. M.
,
Zhou
,
Y.
,
Murakami
,
T.
, and
Sasaki
,
S.
,
2009
, “
Microstructure and Tribological Properties of ZrO2 (Y2O3) Matrix Composites Doped With Different Solid Lubricants From Room Temperature to 800 °C
,”
Wear
,
267
(
9–10
), pp.
1353
1360
. 10.1016/j.wear.2008.11.017
17.
Cura
,
M. E.
,
Kim
,
S. H.
,
Muukkonen
,
T.
,
Varjus
,
S.
,
Vaajoki
,
A.
,
Söderberg
,
O.
,
Suhonen
,
T.
,
Kanerva
,
U.
,
Lee
,
S. W.
, and
Hannula
,
S. P.
,
2013
, “
Microstructure and Tribological Properties of Pulsed Electric Current Sintered Alumina–Zirconia Nanocomposites With Different Solid Lubricants
,”
Ceram. Int.
,
39
(
2
), pp.
2093
2105
. 10.1016/j.ceramint.2012.08.065
18.
Su
,
Y. L.
, and
Kao
,
W. H.
,
2003
, “
Tribological Behaviour and Wear Mechanism of MoS2–Cr Coatings Sliding Against Various Counterbody
,”
Tribol. Int.
,
36
(
1
), pp.
11
23
. 10.1016/S0301-679X(02)00095-6
19.
Hu
,
K. H.
,
Hu
,
X. G.
, and
Sun
,
X. J.
,
2010
, “
Morphological Effect of MoS2 Nanoparticles on Catalytic Oxidation and Vacuum Lubrication
,”
Appl. Surf. Sci.
,
256
(
8
), pp.
2517
2523
. 10.1016/j.apsusc.2009.10.098
20.
Arslan
,
E.
,
Totik
,
Y.
,
Bayrak
,
O.
,
Efeoglu
,
I.
, and
Çelik
,
A.
,
2010
, “
High Temperature Friction and Wear Behavior of MoS2/Nb Coating in Ambient Air
,”
J. Coat. Technol. Res.
,
7
(
1
), pp.
131
137
. 10.1007/s11998-009-9171-7
21.
Kong
,
L.
,
Bi
,
Q.
,
Niu
,
M.
,
Zhu
,
S.
,
Yang
,
J.
, and
Liu
,
W.
,
2013
, “
High-Temperature Tribological Behavior of ZrO2–MoS2–CaF2 Self-Lubricating Composites
,”
J. Eur. Ceram. Soc.
,
33
(
1
), pp.
51
59
. 10.1016/j.jeurceramsoc.2012.08.003
22.
Kong
,
L.
,
Bi
,
Q.
,
Niu
,
M.
,
Zhu
,
S.
,
Yang
,
J.
, and
Liu
,
W.
,
2013
, “
ZrO2 (Y2O3)–MoS2–CaF2 Self-Lubricating Composite Coupled With Different Ceramics From 20 °C to 1000 °C
,”
Tribol. Int.
,
64
, pp.
53
62
. 10.1016/j.triboint.2013.02.027
23.
Su
,
Y.
,
Fan
,
H.
,
Zhang
,
Y.
,
Hu
,
T.
, and
Hu
,
L.
,
2018
, “
Surface Engineering Design of Alumina/Molybdenum Fibrous Monolithic Ceramic to Achieve Excellent Lubrication in a High Vacuum Environment
,”
Tribol. Lett.
,
66
(
2
), p.
72
. 10.1007/s11249-018-1021-2
24.
Su
,
Y.
,
Zhang
,
Y.
,
Song
,
J.
, and
Hu
,
L.
,
2017
, “
Novel Approach to the Fabrication of an Alumina-MoS2 Self-Lubricating Composite via the In Situ Synthesis of Nanosized MoS2
,”
ACS Appl. Mater. Interfaces
,
9
(
36
), pp.
30263
30266
. 10.1021/acsami.7b09000
25.
Ma
,
L.
,
Xu
,
L. M.
,
Zhou
,
X. P.
, and
Xu
,
X. Y.
,
2014
, “
Biopolymer-Assisted Hydrothermal Synthesis of Flower-Like MoS2 Microspheres and Their Supercapacitive Properties
,”
Mater. Lett.
,
132
, pp.
291
294
. 10.1016/j.matlet.2014.06.108
26.
Azhar
,
A. Z.
,
Mohamad
,
H.
,
Ratnam
,
M. M.
, and
Ahmad
,
Z. A.
,
2010
, “
The Effects of MgO Addition on Microstructure, Mechanical Properties and Wear Performance of Zirconia-Toughened Alumina Cutting Inserts
,”
J. Alloys Compd.
,
497
(
1–2
), pp.
316
320
. 10.1016/j.jallcom.2010.03.054
27.
Liu
,
Z.
,
Gao
,
Z.
,
Liu
,
Y.
,
Xia
,
M.
,
Wang
,
R.
, and
Li
,
N.
,
2017
, “
Heterogeneous Nanostructure Based on 1T-Phase MoS2 for Enhanced Electrocatalytic Hydrogen Evolution
,”
ACS Appl. Mater. Interfaces
,
9
(
30
), pp.
25291
25297
. 10.1021/acsami.7b05775
28.
Evans
,
A. G.
, and
Charles
,
E. A.
,
1976
, “
Fracture Toughness Determinations by Indentation
,”
J. Am. Ceram. Soc.
,
59
(
7–8
), pp.
371
372
. 10.1111/j.1151-2916.1976.tb10991.x
29.
Adachi
,
K.
,
Kato
,
K.
, and
Chen
,
N.
,
1997
, “
Wear Map of Ceramics
,”
Wear
,
203
, pp.
291
301
. 10.1016/S0043-1648(96)07363-2
30.
Deng
,
S.
,
Gao
,
E.
,
Xu
,
Z.
, and
Berry
,
V.
,
2017
, “
Adhesion Energy of MoS2 Thin Films on Silicon-Based Substrates Determined via the Attributes of a Single MoS2 Wrinkle
,”
ACS Appl. Mater. Interfaces
,
9
(
8
), pp.
7812
7818
. 10.1021/acsami.6b16175
31.
Singh
,
B. K.
,
Ghosh
,
K.
,
Roy
,
S. S.
,
Mandal
,
B.
, and
Mandal
,
N.
,
2018
, “
Correlation Between Microstructure and Mechanical Properties of YSZ/Al2O3 Ceramics and Its Effect on High Speed Machining of Steel
,”
Trans. Indian Ceram. Soc.
,
77
(
4
), pp.
219
225
. 10.1080/0371750X.2018.1528889
32.
Ghosh
,
K.
,
Mazumder
,
S.
,
Kumar Singh
,
B.
,
Hirani
,
H.
,
Roy
,
P.
, and
Mandal
,
N.
,
2020
, “
Tribological Property Investigation of Self-Lubricating Molybdenum-Based Zirconia Ceramic Composite Operational at Elevated Temperature
,”
ASME J. Tribol.
,
142
(
2
), p.
021704
. 10.1115/1.4045015
33.
Holinski
,
R.
, and
Gänsheimer
,
J.
,
1972
, “
A Study of the Lubricating Mechanism of Molybdenum Disulfide
,”
Wear
,
19
(
3
), pp.
329
342
. 10.1016/0043-1648(72)90124-X
34.
Roberts
,
E. W.
,
1989
, “
Ultralow Friction Films of MoS2 for Space Applications
,”
Thin Solid Films
,
181
(
1–2
), pp.
461
473
. 10.1016/0040-6090(89)90515-4
You do not currently have access to this content.