Abstract

The WC-10Co4Cr coatings with conventional structure and bimodal structure were sprayed by high-velocity oxygen fuel (HVOF) technology. The phase compositions and morphologies of the WC-10Co4Cr powders and coatings were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The microhardness, porosity, bonding strength, elastic modulus, and indentation fracture toughness of the conventional coating (Conventional) and the bimodal coating (Bimodal) were also studied. The sliding wear properties of the Conventional and the Bimodal against Si3N4 counterballs under different loads at room temperature (∼25 °C) were investigated using a friction and wear tester. Compared with the Conventional, the Bimodal has denser microstructure, lower porosity, more excellent mechanical properties, and the Bimodal has better wear resistance than the Conventional under different loads. The two coatings under 15 N and 30 N only exhibit abrasive and slightly adhesive wear mechanism, while in the load application of 45 N, additional mechanism which is fatigue is detected and causes flaking of the coating.

References

1.
Liu
,
Y. L.
,
Cheng
,
J.
,
Yin
,
B.
,
Zhu
,
S. Y.
,
Qiao
,
Z. H.
, and
Yang
,
J.
,
2017
, “
Study of the Tribological Behaviors and Wear Mechanisms of WC-Co and WC-Fe3Al Hard Materials Under Dry Sliding Condition
,”
Tribol. Int.
,
109
, pp.
19
25
.
2.
Sathisha
,
C. H.
,
Ravikumar
,
B. N.
,
Anand
,
K.
, and
Shalini
,
T.
,
2016
, “
Elevated Temperature Fretting Wear Behavior of Cobalt-Based Alloys
,”
ASME J. Tribol.
,
138
(
3
), p.
031601
.
3.
Wang
,
H. B.
,
Wang
,
X. Z.
,
Song
,
X. Y.
,
Liu
,
M. M.
, and
Liu
,
X. W.
,
2015
, “
Sliding Wear Behavior of Nanostructured WC-Co-Cr Coatings
,”
Appl. Surf. Sci.
,
355
, pp.
453
460
.
4.
Ma
,
N.
,
Guo
,
L.
,
Cheng
,
Z. X.
,
Wu
,
H. T.
,
Ye
,
F. X.
, and
Zhang
,
K. K.
,
2014
, “
Improvement on Mechanical Properties and Wear Resistance of HVOF Sprayed WC-12Co Coatings by Optimizing Feedstock Structure
,”
Appl. Surf. Sci.
,
320
, pp.
364
371
.
5.
Chen
,
G. Q.
,
Zhang
,
B. G.
,
Wu
,
Z. Z.
,
Shu
,
X.
, and
Feng
,
J. C.
,
2017
, “
Microstructure Transformation and Crack Sensitivity of WC-Co/Steel Joint Welded by Electron Beam
,”
Vacuum
,
139
, pp.
26
32
.
6.
Zhu
,
X. P.
,
Du
,
P. C.
,
Meng
,
Y.
,
Lei
,
M. K.
, and
Guo
,
D. M.
,
2017
, “
Solution to Inverse Problem of Manufacturing by Surface Modification With Controllable Surface Integrity Correlated to Performance: A Case Study of Thermally Sprayed Coatings for Wear Performance
,”
ASME J. Tribol.
,
139
(
6
), p.
061604
.
7.
Hong
,
S.
,
Wu
,
Y. P.
,
Gao
,
W. W.
,
Zhang
,
J. F.
,
Zheng
,
Y. G.
, and
Zheng
,
Y.
,
2018
, “
Slurry Erosion-Corrosion Resistance and Microbial Corrosion Electrochemical Characteristics of HVOF Sprayed WC-10Co-4Cr Coating for Offshore Hydraulic Machinery
,”
Int. J. Refract. Met. Hard. Mater.
,
74
, pp.
7
13
.
8.
Zhou
,
Y.-K.
,
Liu
,
X.-B.
,
Kang
,
J.-J.
,
Yue
,
W.
,
Qin
,
W.-B.
,
Ma
,
G.-Z.
,
Fu
,
Z.-Q.
,
Zhu
,
L.-N.
,
She
,
D.-S.
,
Wang
,
H.-D.
,
Liang
,
J.
,
Weng
,
W.
, and
Wang
,
C.-B.
,
2020
, “
Corrosion Behavior of HVOF Sprayed WC-10Co4Cr Coatings in the Simulated Seawater Drilling Fluid Under High Pressure
,”
Eng. Failure Anal.
,
109
, p.
104338
.
9.
Liu
,
X. B.
,
Kang
,
J. J.
,
Yue
,
W.
,
Fu
,
Z. Q.
,
Zhu
,
L. N.
,
She
,
D. S.
,
Liang
,
J.
, and
Wang
,
C. B.
,
2019
, “
Performance Evaluation of HVOF Sprayed WC-10Co4Cr Coatings Under Slurry Erosion
,”
Surf. Eng.
,
35
(
9
), pp.
816
825
.
10.
Zhu
,
L. N.
,
Wang
,
C. B.
,
Wang
,
H. D.
,
Xu
,
B. S.
,
Zhuang
,
D. M.
,
Liu
,
J. J.
, and
Li
,
G. L.
,
2012
, “
Microstructure and Tribological Properties of WS2/MoS2 Multilayer Films
,”
Appl. Surf. Sci.
,
258
(
6
), pp.
1944
1948
.
11.
Lin
,
L.
,
Li
,
G. L.
,
Wang
,
H. D.
,
Kang
,
J. J.
,
Xu
,
Z. L.
, and
Wang
,
H. J.
,
2015
, “
Structure and Wear Behavior of NiCr-Cr3C2 Coatings Sprayed by Supersonic Plasma Spraying and High Velocity Oxy-Fuel Technologies
,”
Appl. Surf. Sci.
,
356
, pp.
383
390
.
12.
Kamdi
,
Z.
,
Shipway
,
P. H.
,
Voisey
,
K. T.
, and
Sturgeon
,
A. J.
,
2011
, “
Abrasive Wear Behaviour of Conventional and Large-Particle Tungsten Carbide-Based Cermet Coatings as a Function of Abrasive Size and Type
,”
Wear
,
271
(
9–10
), pp.
1264
1272
.
13.
Wang
,
Q.
,
Chen
,
Z. H.
, and
Ding
,
Z. X.
,
2009
, “
Performance of Abrasive Wear of WC-12Co Coatings Sprayed by HVOF
,”
Tribol. Int.
,
42
(
7
), pp.
1046
1051
.
14.
Basak
,
A. K.
,
Celis
,
J. P.
,
Ponthiaux
,
P.
,
Wenger
,
F.
,
Vardavoulias
,
M.
, and
Matteazzi
,
P.
,
2012
, “
Effect of Nanostructuring and Al Alloying on Corrosion Behaviour of Thermal Sprayed WC-Co Coatings
,”
Surf. Coat. Technol.
,
558
(
16
), pp.
377
385
.
15.
Guilemany
,
J. M.
,
Dosta
,
S.
,
Nin
,
J.
, and
Miguel
,
J. R.
,
2005
, “
Study of the Properties of WC-Co Nanostructured Coatings Sprayed by High-Velocity Oxyfuel
,”
J. Therm. Spray Technol.
,
14
(
3
), pp.
405
413
.
16.
Mi
,
P. B.
,
Wang
,
T.
, and
Ye
,
F. X.
,
2017
, “
Influences of the Compositions and Mechanical Properties of HVOF Sprayed Bimodal WC-Co Coating on Its High Temperature Wear Performance
,”
Int. J. Refract. Met. Hard. Mater.
,
69
(
3
), pp.
158
163
.
17.
Lekatou
,
A.
,
Sioulas
,
D.
,
Karantzalis
,
A. E.
, and
Grimanelis
,
D.
,
2015
, “
A Comparative Study on the Microstructure and Surface Property Evaluation of Coatings Produced From Nanostructured and Conventional WC–Co Powders HVOF-Sprayed on Al7075
,”
Surf. Coat. Technol.
,
276
, pp.
539
556
.
18.
Gao
,
Y.
,
Gao
,
C. Q.
,
Gao
,
J. Y.
, and
Cai
,
L.
,
2019
, “
Comparison of the Mechanical and Wear-Resistant Properties of WC-13Ni4Cr and WC-10Co4Cr Coatings Obtained by Detonation Spraying
,”
J. Therm. Spray Tech.
,
28
(
4
), pp.
851
861
.
19.
Ji
,
G. C.
,
Wang
,
H. T.
,
Chen
,
X.
,
Bai
,
X. B.
,
Dong
,
Z. X.
, and
Yang
,
F. G.
,
2013
, “
Characterization of Cold-Sprayed Multimodal WC-12Co Coating
,”
Surf. Coat. Technol.
,
235
, pp.
536
543
.
20.
Wang
,
Q.
,
Chen
,
Z. H.
,
Li
,
L. X.
, and
Yang
,
G. B.
,
2012
, “
The Parameters Optimization and Abrasion Wear Mechanism of Liquid Fuel HVOF Sprayed Bimodal WC–12Co Coating
,”
Surf. Coat. Technol.
,
206
(
8–9
), pp.
2233
2241
.
21.
Konyashin
,
I.
,
Ries
,
B.
, and
Lachmann
,
F.
,
2010
, “
Near-Nano WC–Co Hardmetals: Will They Substitute Conventional Coarse-Grained Mining Grades?
,”
Int. J. Refract. Met. Hard. Mater.
,
28
(
4
), pp.
489
497
.
22.
Zhao
,
S. X.
,
Song
,
X. Y.
,
Wei
,
C. B.
,
Zhang
,
L.
,
Liu
,
X. M.
, and
Zhang
,
J. X.
,
2009
, “
Effects of WC Particle Size on Densification and Properties of Spark Plasma Sintered WC-Co Cermet
,”
Int. J. Refract. Met. Hard. Mat.
,
27
(
6
), pp.
1014
1018
.
23.
Wang
,
H. B.
,
Yang
,
T.
,
Song
,
X. Y.
,
Liu
,
X. M.
,
Wang
,
X. Z.
, and
Wu
,
X.
,
2017
, “
Wear Resistance Enhancement of Bimodal-Grained Cemented Carbide Coating
,”
Surf. Coat. Technol.
,
309
, pp.
759
766
.
24.
Tang
,
L.
,
Kang
,
J. J.
,
He
,
P. F.
,
Ding
,
S. Y.
,
Chen
,
S. Y.
,
Liu
,
M.
,
Xiong
,
Y. C.
,
Ma
,
G. Z.
, and
Wang
,
H. D.
,
2019
, “
Effects of Spraying Conditions on the Microstructure and Properties of NiCrBSi Coatings Prepared by Internal Rotating Plasma Spraying
,”
Surf. Coat. Technol.
,
374
, pp.
625
633
.
25.
Evans
,
A. G.
, and
Wilshaw
,
T. R.
,
1976
, “
Quasi-Static Solid Particle Damage in Brittle Solids—I. Observations Analysis and Implications
,”
Acta Metall.
,
24
(
10
), pp.
939
956
.
26.
Geng
,
Z.
,
Li
,
S.
,
Duan
,
D. L.
, and
Liu
,
Y.
,
2015
, “
Wear Behaviour of WC–Co HVOF Coatings at Different Temperatures in Air and Argon
,”
Wear
,
330
, pp.
348
353
.
27.
Zhao
,
X. Q.
,
Zhou
,
H. D.
, and
Chen
,
J. M.
,
2006
, “
Comparative Study of the Friction and Wear Behavior of Plasma Sprayed Conventional and Nanostructured WC-12%Co Coatings on Stainless Steel
,”
Mat. Sci. Eng. A—Struct.
,
431
(
1–2
), pp.
290
297
.
28.
Su
,
J.
,
Kang
,
J.-J.
,
Yue
,
W.
,
Ma
,
G.-Z.
,
Fu
,
Z.-Q.
,
Zhu
,
L.-N.
,
She
,
D.-S.
,
Wang
,
H.-D.
, and
Wang
,
C.-B.
,
2019
, “
Comparison of Tribological Behavior of Fe-Based Metallic Glass Coatings Fabricated by Cold Spraying and High Velocity Air Fuel Spraying
,”
J. Non-Cryst. Solids
,
552
, p.
119582
.
29.
Guilemany
,
J. M.
,
Dosta
,
S.
, and
Miguel
,
J. R.
,
2006
, “
The Enhancement of the Properties of WC-Co HVOF Coatings Through the Use of Nanostructured and Microstructured Feedstock Powders
,”
Surf. Coat. Technol.
,
201
(
3–4
), pp.
1180
1190
.
30.
Park
,
S. Y.
,
Kim
,
M. C.
, and
Park
,
C. G.
,
2007
, “
Mechanical Properties and Microstructure Evolution of the Nano WC–Co Coatings Fabricated by Detonation Gun Spraying With Post Heat Treatment
,”
Mat. Sci. Eng. A—Struct.
,
449
, pp.
894
897
.
31.
Sudaprasert
,
T.
,
Shipway
,
P. H.
, and
McCartney
,
D. G.
,
2003
, “
Sliding Wear Behaviour of HVOF Sprayed WC–Co Coatings Deposited With Both Gas-Fuelled and Liquid
,”
Wear
,
255
, pp.
943
949
.
32.
Stewart
,
D. A.
,
Shipway
,
P. H.
, and
McCartney
,
D. G.
,
2000
, “
Microstructural Evolution in Thermally Sprayed WC–Co Coatings: Comparison Between Nanocomposite and Conventional Starting Powders
,”
Acta Mater.
,
48
, pp.
1593
1604
.
33.
Wang
,
Q.
,
Zhang
,
S. Y.
,
Cheng
,
Y. L.
,
Xiang
,
J.
,
Zhao
,
X. Q.
, and
Yang
,
G. B.
,
2013
, “
Wear and Corrosion Performance of WC-10Co4Cr Coatings Deposited by Different HVOF and HVAF Spraying Processes
,”
Surf. Coat. Technol.
,
218
, pp.
127
136
.
34.
Yin
,
B.
,
Zhou
,
H. D.
,
Yi
,
D. L.
,
Chen
,
J. M.
, and
Yan
,
F. Y.
,
2010
, “
Microsliding Wear Behaviour of HVOF Sprayed Conventional and Nanostructured WC–12Co Coatings at Elevated Temperatures
,”
Surf. Eng.
,
26
(
6
), pp.
469
477
.
35.
Qin
,
W. B.
,
Li
,
J. S.
,
Liu
,
Y. Y.
,
Kang
,
J. J.
,
Zhu
,
L. N.
,
Shu
,
D. F.
,
Peng
,
P.
,
She
,
D. S.
,
Meng
,
D. Z.
, and
Li
,
Y. S.
,
2019
, “
Effects of Grain Size on Tensile Property and Fracture Morphology of 316L Stainless Steel
,”
Mater. Lett.
,
254
, pp.
116
119
.
36.
Hong
,
S.
,
Wu
,
Y. P.
,
Wang
,
B.
,
Zhang
,
J. F.
,
Zheng
,
Y.
, and
Qiao
,
L.
,
2017
, “
The Effect of Temperature on the Dry Sliding Wear Behavior of HVOF Sprayed Nanostructured WC-CoCr Coatings
,”
Ceram. Int.
,
43
(
1
), pp.
458
462
.
37.
Liu
,
Y.
,
Liu
,
W.
,
Ma
,
Y.
,
Meng
,
S.
,
Liu
,
C.
,
Long
,
L.
, and
Tang
,
S.
,
2017
, “
A Comparative Study on Wear and Corrosion Behaviour of HVOF- and HVAF-Sprayed WC–10Co–4Cr Coatings
,”
Surf. Eng.
,
33
(
1
), pp.
63
71
.
38.
Karuppusamy
,
P.
,
Lingadurai
,
K.
, and
Sivananth
,
V.
,
2019
, “
To Study the Role of WC Reinforcement and Deep Cryogenic Treatment on AZ91 MMNC Wear Behavior Using Multilevel Factorial Design
,”
ASME J. Tribol.
,
141
(
4
),
041608
.
39.
Piao
,
Z. Y.
,
Xu
,
B. S.
,
Wang
,
H. D.
, and
Yu
,
X. X.
,
2019
, “
Rolling Contact Fatigue Behavior of Thermal Sprayed Coating: A Review
,”
Crit. Rev. Solid State Mater. Sci.
,
45
(
6
), pp.
1
28
.
You do not currently have access to this content.