Abstract

The tribological properties of gear interface have been widely concerned in the past decades. In this study, based on the local involute profile and crown modification, a thermal elastohydrodynamic lubrication model is proposed for a helical gear pair. To discuss the influences of dynamic load on the tribological properties of helical gear pair, the dynamic mesh force of tooth surface is obtained by torsional vibration model. The influences of working conditions and surface roughness on the tribological properties of helical gear pair are investigated. The tribological properties are evaluated in terms of the average film thickness, friction coefficient, mechanical power loss etc. Results show that the dynamic effect of gears has a significant effect on the tribological properties, especially at a specific speed, such as resonance speed. In order to simulate gear lubrication accurately, it is recommended to adopt local involute tooth profile and consider tooth profile modification to calculate geometric clearance. The influence of input rotation speed on the dynamic characteristics and tribological properties of gear is more significant than that of input torque. The surface roughness significantly changes the distribution of interface pressure and film thickness. With the increase of roughness amplitude, the local fluctuation amplitude of pressure and film thickness increase and the dry contact occurs at the end of contact line. Meanwhile, the maximum subsurface stress moves toward the tooth surface, especial for the high frequency engineering roughness. This local stress concentration is harmful to the fatigue life of gear meshing process.

References

1.
Snidle
,
R. W.
, and
Evans
,
H. P.
,
2009
, “
Some Aspects of Gear Tribology
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
223
(
1
), pp.
103
141
.
2.
Wang
,
Y.
,
Li
,
H.
,
Tong
,
J.
, and
Yang
,
P.
,
2004
, “
Transient Thermoelastohydrodynamic Lubrication Analysis of an Involute Spur Gear
,”
Tribol. Int.
,
37
(
10
), pp.
773
782
.
3.
Xu
,
H.
,
2005
, “
Development of a Generalized Mechanical Efficiency Prediction Methodology for Gear Pairs
,”
Ph.D. thesis
,
The Ohio State University
,
Columbus, OH
.
4.
Diab
,
Y.
,
Ville
,
F.
, and
Velex
,
P.
,
2006
, “
Prediction of Power Losses Due to Tooth Friction in Gears
,”
Tribol. Trans.
,
49
(
2
), pp.
260
270
.
5.
Kumar
,
P.
,
Saini
,
P. K.
, and
Tandon
,
P.
,
2007
, “
Transient Elastohydrodynamic Lubrication Analysis of an Involute Spur Gear Using Couple-Stress Fluid
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
221
(
6
), pp.
743
754
.
6.
Evans
,
H. P.
,
Snidle
,
R. W.
, and
Sharif
,
K. J.
,
2009
, “
Deterministic Mixed Lubrication Modeling Using Roughness Measurements in Gear Applications
,”
Tribol. Int.
,
42
(
10
), pp.
1406
1417
.
7.
Li
,
S.
,
Vaidyanathan
,
A.
,
Harianto
,
J.
, and
Kahraman
,
A.
,
2009
, “
Influence of Design Parameters on Mechanical Power Losses of Helical Gear Pairs
,”
J. Adv. Mech. Des. Syst. Manuf.
,
3
(
2
), pp.
146
158
.
8.
Huang
,
K. J.
,
Wu
,
M. R.
, and
Tseng
,
J. T.
,
2010
, “
Dynamic Analyses of Gear Pairs Incorporating the Effect of Time-Varying Lubrication Damping
,”
J. Vib. Control
,
17
(
3
), pp.
355
363
.
9.
Li
,
S.
, and
Kahraman
,
A.
,
2011
, “
Influence of Dynamic Behaviour on Elastohydrodynamic Lubrication of Spur Gears
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
225
(
8
), pp.
740
753
.
10.
Anuradha
,
P.
, and
Kumar
,
P.
,
2012
, “
Effect of Lubricant Selection on EHL Performance of Involute Spur Gears
,”
Tribol. Int.
,
50
, pp.
82
90
.
11.
Bobach
,
L.
,
Beilicke
,
R.
,
Bartel
,
D.
, and
Deters
,
L.
,
2012
, “
Thermal Elastohydrodynamic Simulation of Involute Spur Gears Incorporating Mixed Friction
,”
Tribol. Int.
,
48
, pp.
191
206
.
12.
Yuan
,
S. H.
,
Dong
,
H. L.
, and
Li
,
X. Y.
,
2012
, “
Analysis of Lubricating Performance for Involute Gear Based on Dynamic Loading Theory
,”
ASME J. Mech. Des.
,
134
(
12
), pp.
121004
.
13.
Barbieri
,
M.
,
Lubrecht
,
A. A.
, and
Pellicano
,
F.
,
2013
, “
Behavior of Lubricant Fluid Film in Gears Under Dynamic Conditions
,”
Tribol. Int.
,
62
, pp.
37
48
.
14.
Li
,
S.
, and
Kahraman
,
A.
,
2013
, “
A Tribo-Dynamic Model of a Spur Gear Pair
,”
J. Sound Vib.
,
332
(
20
), pp.
4963
4978
.
15.
Liu
,
H.
,
Mao
,
K.
,
Zhu
,
C.
,
Chen
,
S.
,
Xu
,
X.
, and
Liu
,
M.
,
2013
, “
Spur Gear Lubrication Analysis With Dynamic Loads
,”
Tribol. Trans.
,
56
(
1
), pp.
41
48
.
16.
Jamali
,
H. U.
,
Sharif
,
K. J.
,
Evans
,
H. P.
, and
Snidle
,
R. W.
,
2015
, “
The Transient Effects of Profile Modification on Elastohydrodynamic Oil Films in Helical Gears
,”
Tribol. Trans.
,
58
(
1
), pp.
119
130
.
17.
Beilicke
,
R.
,
Bobach
,
L.
, and
Bartel
,
D.
,
2016
, “
Transient Thermal Elastohydrodynamic Simulation of a DLC Coated Helical Gear Pair Considering Limiting Shear Stress Behavior of The Lubricant
,”
Tribol. Int.
,
97
, pp.
136
150
.
18.
Huang
,
X.
, and
Wang
,
Y.
,
2016
, “
Transient Elastohydrodynamic Lubrication Analysis of Spur Gears Running-in Considering Effects of Solid Particles and Surface Roughness
,”
Ind. Lubr. Tribol.
,
68
(
2
), pp.
183
190
.
19.
Liu
,
H.
,
Zhu
,
C.
,
Zhang
,
Y.
,
Wang
,
Z.
, and
Song
,
C.
,
2016
, “
Tribological Evaluation of a Coated Spur Gear Pair
,”
Tribol. Int.
,
99
, pp.
117
126
.
20.
Wei
,
J.
,
Zhang
,
A.
, and
Gao
,
P.
,
2016
, “
A Study of Spur Gear Pitting Under EHL Conditions: Theoretical Analysis and Experiments
,”
Tribol. Int.
,
94
, pp.
146
154
.
21.
Zhou
,
C.
,
Xiao
,
Z.
,
Chen
,
S.
, and
Han
,
X.
,
2017
, “
Normal and Tangential Oil Film Stiffness of Modified Spur Gear With Non-Newtonian Elastohydrodynamic Lubrication
,”
Tribol. Int.
,
109
, pp.
319
327
.
22.
Ouyang
,
T.
,
Huang
,
H.
,
Zhou
,
X.
,
Pan
,
M.
,
Chen
,
N.
, and
Lv
,
D.
,
2018
, “
A Finite Line Contact Tribo-Dynamic Model of a Spur Gear Pair
,”
Tribol. Int.
,
119
, pp.
753
765
.
23.
Peng
,
Y.
,
Zhao
,
N.
,
Zhang
,
M.
,
Li
,
W.
, and
Zhou
,
R.
,
2018
, “
Non-Newtonian Thermal Elastohydrodynamic Simulation of Helical Gears Considering Modification and Misalignment
,”
Tribol. Int.
,
124
, pp.
46
60
.
24.
Xiao
,
Z.
, and
Shi
,
X.
,
2019
, “
Investigation on Stiffness and Damping of Transient Non-Newtonian Thermal Elastohydrodynamic Point Contact for Crowned Herringbone Gears
,”
Tribol. Int.
,
137
, pp.
102
112
.
25.
Yang
,
Y.
,
Li
,
W.
,
Wang
,
J.
, and
Zhou
,
Q.
,
2019
, “
On the Mixed EHL Characteristics, Friction and Flash Temperature in Helical Gears With Consideration of 3D Surface Roughness
,”
Ind. Lubr. Tribol.
,
71
(
1
), pp.
10
21
.
26.
Liu
,
H.
,
Liu
,
H.
,
Zhu
,
C.
,
Sun
,
Z.
, and
Bai
,
H.
,
2020
, “
Study on Contact Fatigue of a Wind Turbine Gear Pair Considering Surface Roughness
,”
Friction
,
8
(
3
), pp.
553
567
.
27.
Liu
,
M.
,
Zhu
,
C.
, and
Liu
,
H.
,
2015
, “
A Micro-TEHL Finite Line Contact Model for a Helical Gear Pair
,”
Adv. Mech. Eng.
,
7
(
1
), p.
104790
.
28.
Liu
,
M.
,
Zhu
,
C.
,
Liu
,
H.
, and
Wu
,
C.
,
2016
, “
Parametric Studies of Lubrication Performance of a Helical Gear Pair With Non-Newtonian Fluids
,”
J. Mech. Sci. Technol.
,
30
(
1
), pp.
317
326
.
29.
Liu
,
M.
,
Xu
,
P.
, and
Yan
,
C.
,
2019
, “
Parametric Studies of Mechanical Power Loss for Helical Gear Pair Using a Thermal Elastohydrodynamic Lubrication Model
,”
ASME J. Tribol.
,
141
(
1
), p.
011502
.
30.
Liu
,
M.
,
Zhang
,
J.
,
Xu
,
P.
,
Cai
,
H.
,
Ku
,
H.
, and
Wu
,
C.
, “
Thermal Elastohydrodynamic Lubrication Analysis of Helical Gear Pair Under Starved Lubrication Condition
,”
Lubr. Sci.
,
31
(
7
), pp.
321
334
.
31.
Liu
,
M.
,
Xu
,
P.
,
Zhang
,
J.
, and
Ding
,
H.
,
2020
, “
Analysis of Mechanical Power Loss of a Helical Gear Pair Based on the Starved Thermal-Elastohydrodynamic Lubrication Model
,”
Ind. Lubr. Tribol.
,
72
(
3
), pp.
333
340
.
32.
Liu
,
M.
,
Wu
,
C.
, and
Yan
,
C.
,
2017
, “
Predicting Fatigue Life for Finite Roller Contacts Based on a Mixed EHL Model Using Realistic Surface Roughness
,”
J. Mech. Sci. Tech.
,
31
(
7
), pp.
3419
3428
.
33.
Eyring
,
H.
,
1936
, “
Viscosity, Plasticity and Diffusion as Examples of Absolute Reaction Rates
,”
J. Chem. Phys.
,
4
(
4
), pp.
283
291
.
34.
Roelands
,
C. J. A.
,
1966
, “
Correlation Aspects of Viscosity-Temperature-Pressure Relationship of Lubricating Oils
,”
Ph.D. thesis
,
Delft University of Technology
.
35.
Dowson
,
D.
,
Higginson
,
G. R.
, and
Whitaker
,
A. V.
,
1962
, “
Elasto-Hydrodynamic Lubrication: A Survey of Isothermal Solutions
,”
J. Mech. Eng. Sci.
,
4
(
2
), pp.
121
126
.
36.
Carslaw
,
H.S.
, and
Jaeger
,
J.C
.,
1959
,
Conduction of Heat in Solids
, 2nd ed.,
Oxford at the Clarendon Press
,
London
.
37.
Liu
,
Y.
,
Wang
,
Q. J.
,
Wang
,
W.
,
Hu
,
Y.
, and
Zhu
,
D.
,
2006
, “
Effects of Differential Scheme and Mesh Density on EHL Film Thickness in Point Contacts
,”
ASME J. Tribol.
,
128
(
3
), pp.
641
653
.
38.
Liu
,
S.
, and
Wang
,
Q.
,
2002
, “
Studying Contact Stress Fields Caused By Surface Tractions With a Discrete Convolution and Fast Fourier Transform Algorithm
,”
ASME J. Tribol.
,
124
(
1
), pp.
36
45
.
39.
Tian
,
X.
,
2004
, “
Dynamic Simulation for System Response of Gearbox Including Localized Gear Faults
,”
Master dissertation
,
University of Alberta
,
Edmonton, AB
.
40.
Liu
,
M.
,
Liu
,
Y.
, and
Wu
,
C.
,
2018
, “
The Transient and Thermal Effects on EHL Performance of a Helical Gear Pair
,”
Tribol. Online
,
13
(
3
), pp.
81
90
.
You do not currently have access to this content.