Abstract

This investigation presents the tribological performance of (Al2O3 + TiN)/Ti6Al4V cladding deposited on AISI304 steel substrate by the tungsten inert gas (TIG) cladding approach. The microstructural characterization by SEM confirmed claddings with visually crack-free and sound metallurgical bonding at the clad layer—substrate interface. The energy dispersive spectroscopy (EDS) analysis revealed the presence of matrix and reinforcement phases as major elements with the clad layer and with considerably no oxidation during their deposition. The XRD spectra revealed that matrix and reinforcements are dominant phases in the clad layer. The formation of compounds reflected considerably a lower dilution of reinforcement phase with Ti6Al4V matrix during melting and deposition. Higher the microhardness of the (Al2O3 + TiN)/Ti6Al4V clad layer in the cladding zone compared with other clad layer compositions such as Ti6Al4V, Al2O3/Ti6Al4V, and TiN/Ti6Al4V, it is varied from 1130HV0.2 to 1222HV0.2, and the average microhardness is about 990.57HV0.2 which is 175% improvement compared with the substrate. The cladding with dual reinforcement composition has shown a superior wear resistance compared with all other clad layer composite compositions. The improvement in the wear resistance achieved with (Al2O3 + TiN)/Ti6Al4V composite clad layer deposition at 2.5 m/s, 3.5 m/s, and 4.5 m/s sliding velocities is 56.60%, 63.26%, and 68.53%, respectively, compared with the substrate. The wear morphology of the composite claddings is relatively smoother and the wear furrows are shallower compared with the substrate, especially for the composite clad layer with (Al2O3 + TiN) reinforcement phase.

References

1.
Kumar
,
A.
, and
Das
,
A. K.
,
2020
, “
Mechanical Properties of Fe + SiC Metal Matrix Composite Fabricated on Stainless Steel 304 by TIG Coating Process
,”
Int. J. Mater. Eng. Innov.
,
11
(
3
), pp.
181
197
.
2.
Buytoz
,
S.
,
Ulutan
,
M.
, and
Yildirim
,
M. M.
,
2005
, “
Dry Sliding Wear Behavior of TIG Welding Clad WC Composite Coatings
,”
Appl. Surf. Sci.
,
252
(
5
), pp.
1313
1323
. .
3.
Peng
,
D. X.
,
2012
, “
The Effects of Welding Parameters on Wear Performance of Clad Layer With TiC Ceramic
,”
Ind. Lubr. Tribol.
,
64
(
5
), pp.
303
311
.
4.
Wang
,
X. H.
,
Zhang
,
M.
,
Liu
,
X. M.
,
Qu
,
S. Y.
, and
Zou
,
Z. D.
,
2008
, “
Microstructure and Wear Properties of TiC/FeCrBSi Surface Composite Coating Prepared by Laser Cladding
,”
Surf. Coat. Technol.
,
202
(
15
), pp.
3600
3606
.
5.
Azwan
,
M.
,
Maleque
,
M. A.
, and
Rahman
,
M. M.
,
2019
, “
TIG Torch Surfacing of Metallic Materials—A Critical Review
,”
Trans. Inst. Met. Finish.
,
97
(
1
), pp.
12
21
.
6.
Naghiyan Fesharaki
,
M.
,
Shoja-Razavi
,
R.
,
Mansouri
,
H. A.
, and
Jamali
,
H.
,
2018
, “
Microstructure Investigation of Inconel 625 Coating Obtained by Laser Cladding and TIG Cladding Methods
,”
Surf. Coat. Technol.
,
353
, pp.
25
31
.
7.
Singh
,
J.
,
Thakur
,
L.
, and
Angra
,
S.
,
2020
, “
An Investigation on the Parameter Optimization and Abrasive Wear Behaviour of Nanostructured WC–10Co–4Cr TIG Weld Cladding
,”
Surf. Coat. Technol.
,
386
, p.
125474
.
8.
Ulutan
,
M.
,
Yildirim
,
M. M.
,
Buytoz
,
S.
, and
Çelik
,
O. N.
,
2011
, “
Microstructure and Wear Behavior of TIG Surface-Alloyed AISI 4140 Steel
,”
Tribol. Trans.
,
54
(
1
), pp.
67
79
.
9.
Mridha
,
S.
, and
Dyuti
,
S.
,
2011
, “
Formation of TiN Dispersed Composite Layer on Steel Surfaces by Titanium Powder Preplacement and TIG Surface Melting Processes
,”
Adv. Mater. Res.
,
264–265
, pp.
1415
1420
.
10.
Sahoo
,
C. K.
,
Soni
,
L.
, and
Masanta
,
M.
,
2016
, “
Evaluation of Microstructure and Mechanical Properties of TiC/TiC-Steel Composite Coating Produced by Gas Tungsten Arc (GTA) Coating Process
,”
Surf. Coat. Technol.
,
307
, pp.
17
27
.
11.
Xu
,
P.
,
Lin
,
C. X.
,
Zhou
,
C. Y.
, and
Yi
,
X. P.
,
2014
, “
Wear and Corrosion Resistance of Laser Cladding AISI 304 Stainless Steel/Al2O3 Composite Coatings
,”
Surf. Coat. Technol.
,
238
, pp.
9
14
.
12.
Kumar
,
A.
, and
Das
,
A. K.
,
2021
, “
Evolution of Microstructure and Mechanical Properties of Co–SiC Tungsten Inert Gas Cladded Coating on 304 Stainless Steel
,”
Eng. Sci. Technol. Int. J.
,
24
(
3
), pp.
591
604
.
13.
Sharifitabar
,
M.
,
Vahdati Khaki
,
J.
, and
Haddad Sabzevar
,
M.
,
2016
, “
Microstructure and Wear Resistance of In-Situ TiC–Al2O3 Particles Reinforced Fe-Based Coatings Produced by Gas Tungsten Arc Cladding
,”
Surf. Coat. Technol.
,
285
, pp.
47
56
.
14.
Wang
,
Y. H.
,
Zhang
,
X. H.
,
Zang
,
J. B.
,
Ge
,
E. B.
,
Zhang
,
J. H.
, and
Cheng
,
X. Z.
,
2011
, “
Ti-Coated SiC Particle Reinforced Sintered Fe–Cu–Sn Alloy
,”
Surf. Coat. Technol.
,
205
(
19
), pp.
4627
4631
.
15.
Meng
,
J.
,
Shi
,
X.
,
Zhang
,
S.
,
Wang
,
M.
,
Xue
,
F.
,
Liu
,
B.
,
Cui
,
W.
, and
Bian
,
L.
,
2019
, “
Friction and Wear Properties of TiN–TiB2–Ni Based Composite Coatings by Argon Arc Cladding Technology
,”
Surf. Coat. Technol.
,
374
, pp.
437
447
.
16.
Rasool
,
G.
,
Mridha
,
S.
, and
Stack
,
M. M.
,
2015
, “
Mapping Wear Mechanisms of TiC/Ti Composite Coatings
,”
Wear
,
328–329
, pp.
498
508
.
17.
Sabzi
,
M.
,
Dezfuli
,
S. M.
, and
Far
,
S. M.
,
2018
, “
Deposition of Ni-Tungsten Carbide Nanocomposite Coating by TIG Welding: Characterization and Control of Microstructure and Wear/Corrosion Responses
,”
Ceram. Int.
,
44
(
18
), pp.
22816
22829
.
18.
Saroj
,
S.
,
Sahoo
,
C. K.
,
Tijo
,
D.
,
Kumar
,
K.
, and
Masanta
,
M.
,
2017
, “
Sliding Abrasive Wear Characteristic of TIG Cladded TiC Reinforced Inconel825 Composite Coating
,”
Int. J. Refract. Met. Hard Mater.
,
69
, pp.
119
130
.
19.
Singh
,
J.
,
Thakur
,
L.
, and
Angra
,
S.
,
2021
, “
A Study of Tribological Behaviour and Optimization of WC–10Co–4Cr Cladding
,”
Surf. Eng.
,
37
(
1
), pp.
70
79
.
20.
Paesano
,
A.
,
Matsuda
,
C. K.
,
Da Cunha
,
J. B. M.
,
Vasconcellos
,
M. A. Z.
,
Hallouche
,
B.
, and
Silva
,
S. L.
,
2003
, “
Synthesis and Characterization of Fe–Al2O3 Composites
,”
J. Magn. Magn. Mater.
,
264
(
2–3
), pp.
264
274
.
21.
Yan
,
W. Q.
,
Dai
,
L.
, and
Bin Gui
,
C.
,
2013
, “
In Situ Synthesis and Hardness of TiC/Ti5Si3 Composites on Ti–5Al–2.5Sn Substrates by Gas Tungsten Arc Welding
,”
Int. J. Miner. Metall. Mater.
,
20
(
3
), pp.
284
289
.
22.
Li
,
J.
,
Zhang
,
X. J.
,
Wang
,
H. P.
, and
Li
,
M. P.
,
2013
, “
Microstructure and Mechanical Properties of Ni-Based Composite Coatings Reinforced by In Situ Synthesized TiB2 + TiC by Laser Cladding
,”
Int. J. Miner. Metall. Mater.
,
20
(
1
), pp.
57
64
.
23.
Qun Jiang
,
S.
,
Wang
,
G.
,
Wen Ren
,
Q.
,
Duo Yang
,
C.
,
Hua Wang
,
Z.
, and
Hua Zhou
,
Z.
,
2015
, “
In Situ Synthesis of Fe-Based Alloy Clad Coatings Containing TiB2–TiN–(h-BN)
,”
Int. J. Miner. Metall. Mater.
,
22
(
6
), pp.
613
619
.
24.
Masanta
,
M.
,
Shariff
,
S. M.
, and
Choudhury
,
A. R.
,
2010
, “
Tribological Behavior of TiB2–TiC–Al2O3 Composite Coating Synthesized by Combined SHS and Laser Technology
,”
Surf. Coat. Technol.
,
204
(
16–17
), pp.
2527
2538
.
25.
Chen
,
C.
,
Feng
,
X.
, and
Shen
,
Y.
,
2020
, “
Microstructures and Properties of TiCp/Al Coating Synthesized on Ti–6Al–4V Alloy Substrate Using Mechanical Alloying Method
,”
J. Alloys Compd.
,
813
, p.
152223
.
26.
Chen
,
T.
,
Li
,
W.
,
Liu
,
D.
,
Xiong
,
Y.
, and
Zhu
,
X.
,
2021
, “
Effects of Heat Treatment on Microstructure and Mechanical Properties of TiC/TiB Composite Bioinert Ceramic Coatings In-Situ Synthesized by Laser Cladding on Ti6Al4V
,”
Ceram. Int.
,
47
(
1
), pp.
755
768
.
27.
Sahu
,
A.
,
Raheem
,
A.
,
Masanta
,
M.
, and
Sahoo
,
C. K.
,
2020
, “
On the Constancy in Wear Characteristic of Large Area TiC–Ni Coating Developed by Overlapping of TIG Arc Scanning
,”
Tribol. Int.
,
151
, p.
106501
.
28.
Prasad
,
R.
,
Waghmare
,
D. T.
,
Kumar
,
K.
, and
Masanta
,
M.
,
2020
, “
Effect of Overlapping Condition on Large Area NiTi Layer Deposited on Ti–6Al–4V Alloy by TIG Cladding Technique
,”
Surf. Coat. Technol.
,
385
, p.
125417
.
29.
Liu
,
Y.
,
Liu
,
W.
,
Ma
,
Y.
,
Liang
,
C.
,
Liu
,
C.
,
Zhang
,
C.
, and
Cai
,
Q.
,
2018
, “
Microstructure and Wear Resistance of Compositionally Graded Ti–Al Intermetallic Coating on Ti6Al4V Alloy Fabricated by Laser Powder Deposition
,”
Surf. Coat. Technol.
,
353
, pp.
32
40
.
30.
Zabihi
,
A.
, and
Soltani
,
R.
,
2018
, “
Tribological Properties of B4C Reinforced Aluminum Composite Coating Produced by TIG Re-Melting of Flame Sprayed Al–Mg–B4C Powder
,”
Surf. Coat. Technol.
,
349
, pp.
707
718
.
31.
Singh
,
J.
,
Thakur
,
L.
, and
Angra
,
S.
,
2020
, “
Abrasive Wear Behavior of WC–10Co–4Cr Cladding Deposited by TIG Welding Process
,”
Int. J. Refract. Met. Hard Mater.
,
88
, p.
105198
.
32.
Kilic
,
M.
,
Imak
,
A.
, and
Kirik
,
I.
,
2021
, “
Surface Modification of AISI 304 Stainless Steel With NiBSi–SiC Composite by TIG Method
,”
J. Mater. Eng. Perform.
,
30
(
2
), pp.
1411
1419
.
33.
Rafiei
,
M.
,
Javadi
,
M.
,
Mostaan
,
H.
, and
Abbasian
,
A. R.
,
2020
, “
The Role of Si on Solidification Behaviour of the NiAl Intermetallic Cladding Produced by the GTAW Process: Rôle du Si Dans la Solidification du Placage Intermétallique NiAl Produit par Soudage tig
,”
Can. Metall. Q.
,
59
(
3
), pp.
262
269
.
34.
Saroj
,
S.
,
Sahoo
,
C. K.
, and
Masanta
,
M.
,
2017
, “
Microstructure and Mechanical Performance of TiC–Inconel825 Composite Coating Deposited on AISI 304 Steel by TIG Cladding Process
,”
J. Mater. Process. Technol.
,
249
, pp.
490
501
.
35.
Sharma
,
D.
,
Ghosh
,
P. K.
,
Kumar
,
S.
,
Das
,
S.
,
Anant
,
R.
, and
Kumar
,
N.
,
2018
, “
Surface Hardening by In-Situ Grown Composite Layer on Microalloyed Steel Employing TIG Arcing Process
,”
Surf. Coat. Technol.
,
352
, pp.
144
158
.
36.
Tavoosi
,
M.
, and
Arjmand
,
S.
,
2017
, “
In Situ Formation of Al/Al3Ti Composite Coating on Pure Ti Surface by TIG Surfacing Process
,”
Surf. Interfaces
,
8
, pp.
1
7
.
37.
Sahoo
,
C. K.
, and
Masanta
,
M.
,
2017
, “
Microstructure and Tribological Behaviour of TiC–Ni–CaF2 Composite Coating Produced by TIG Cladding Process
,”
J. Mater. Process. Technol.
,
243
, pp.
229
245
.
38.
Sahoo
,
C. K.
, and
Masanta
,
M.
,
2017
, “
Microstructure and Mechanical Properties of TiC–Ni Coating on AISI304 Steel Produced by TIG Cladding Process
,”
J. Mater. Process. Technol.
,
240
, pp.
126
137
.
39.
Paraye
,
N. K.
,
Neog
,
S. P.
,
Ghosh
,
P. K.
, and
Das
,
S.
, “
Surface Modification of AISI 8620 Steel by In-Situ Grown TiC Particle Using TIG Arcing
,”
Surf. Coat. Technol.
,
405
, pp.
126533
122021
.
40.
Tijo
,
D.
, and
Masanta
,
M.
,
2018
, “
In-Situ TiC–TiB2 Coating on Ti–6Al–4V Alloy by Tungsten Inert Gas (TIG) Cladding Method: Part-II. Mechanical Performance
,”
Surf. Coat. Technol.
,
344
, pp.
579
589
.
41.
Tijo
,
D.
, and
Masanta
,
M.
,
2019
, “
Effect of Ti/B4C Ratio on the Microstructure and Mechanical Characteristics of TIG Cladded TiC–TiB2 Coating on Ti–6Al–4V Alloy
,”
J. Mater. Process. Technol.
,
266
, pp.
184
197
.
42.
Omoniyi
,
P. O.
,
Akinlabi
,
E. T.
, and
Mahamood
,
R. M.
,
2021
, “
Heat Treatments of Ti6Al4V Alloys for Industrial Applications: An Overview
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1107
(
1
), p.
012094
.
43.
Huang
,
J.-L.
, and
Nayak
,
P. K.
,
2012
, “Effect of Nano-TiN on Mechanical Behavior of Si3N4 Based Nanocomposites by Spark Plasma Sintering (SPS),”
Nanocomposites—New Trends and Developments
, IntechOpen.
44.
Hedenqvist
,
P.
,
Olsson
,
M.
,
Wallén
,
P.
,
Kassman
,
Å.
,
Hogmark
,
S.
, and
Jacobson
,
S.
,
1990
, “
How TiN Coatings Improve the Performance of High Speed Steel Cutting Tools
,”
Surf. Coat. Technol.
,
41
(
2
), pp.
243
256
.
45.
Khan
,
T. I.
, and
Fowles
,
D.
,
1997
, “
Surface Modification of Ti–6Al–4Y Alloy Using Metal Arc Heat Source
,”
Surf. Eng.
,
13
(
3
), pp.
257
259
.
46.
Nunogaki
,
M.
,
2001
, “
Transformation of Titanium Surface to TiC- or TiN-Ceramics by Reactive Plasma Processing
,”
Mater. Des.
,
22
(
7
), pp.
601
604
.
47.
Hu
,
R. H.
, and
Lim
,
J. K.
,
2010
, “
Hardness and Wear Resistance Improvement of Surface Composite Layer on Ti–6Al–4V Substrate Fabricated by Powder Sintering
,”
Mater. Des.
,
31
(
5
), pp.
2670
2675
.
48.
Li Gao
,
Y.
,
Shan Wang
,
C.
,
Yao
,
M.
, and
Bin Liu
,
H.
,
2007
, “
The Resistance to Wear and Corrosion of Laser-Cladding Al2O3 Ceramic Coating on Mg Alloy
,”
Appl. Surf. Sci.
,
253
(
12
), pp.
5306
5311
.
49.
Zafar
,
S.
, and
Sharma
,
A. K.
,
2015
, “
Dry Sliding Wear Performance of Nanostructured WC–12Co Deposited Through Microwave Cladding
,”
Tribol. Int.
,
91
, pp.
14
22
.
50.
Kumar
,
S.
,
Mandal
,
A.
,
Das
,
A. K.
, and
Dixit
,
A. R.
,
2018
, “
Parametric Study and Characterization of AlN–Ni–Ti6Al4V Composite Cladding on Titanium Alloy
,”
Surf. Coat. Technol.
,
349
, pp.
37
49
.
51.
Li
,
J.
,
Chen
,
C.
,
Squartini
,
T.
, and
He
,
Q.
,
2010
, “
A Study on Wear Resistance and Microcrack of the Ti3Al/TiAl + TiC Ceramic Layer Deposited by Laser Cladding on Ti–6Al–4V Alloy
,”
Appl. Surf. Sci.
,
257
(
5
), pp.
1550
1555
.
52.
Pu
,
Y.
,
Guo
,
B.
,
Zhou
,
J.
,
Zhang
,
S.
,
Zhou
,
H.
, and
Chen
,
J.
,
2008
, “
Microstructure and Tribological Properties of In Situ Synthesized TiC, TiN, and SiC Reinforced Ti3Al Intermetallic Matrix Composite Coatings on Pure Ti by Laser Cladding
,”
Appl. Surf. Sci.
,
255
(
5 PART 2
), pp.
2697
2703
.
53.
Kgoete
,
F. M.
,
Popoola
,
A. P. I.
, and
Fayomi
,
O. S. I.
,
2019
, “
Oxidation Resistance of Spark Plasma Sintered Ti6Al4V–TiN Composites
,”
J. Alloys Compd.
,
772
, pp.
943
948
.
54.
Li
,
J.
,
Gao
,
L.
, and
Guo
,
J.
,
2003
, “
Mechanical Properties and Electrical Conductivity of TiN–Al2O3 Nanocomposites
,”
J. Eur. Ceram. Soc.
,
23
(
1
), pp.
69
74
.
55.
Tjong
,
S. C.
, and
Lau
,
K. C.
,
1999
, “
Sliding Wear of Stainless Steel Matrix Composite Reinforced With TiB2 Particles
,”
Mater. Lett.
,
41
(
4
), pp.
153
158
.
56.
Téllez-Villaseñor
,
M. A.
,
León-Patiño
,
C. A.
,
Aguilar-Reyes
,
E. A.
, and
Bedolla-Jacuinde
,
A.
,
2021
, “
Effect of Load and Sliding Velocity on the Wear Behaviour of Infiltrated TiC/Cu–Ni Composites
,”
Wear
,
484–485
, p.
203667
.
57.
Dou
,
Y.
,
Liu
,
Y.
,
Liu
,
Y.
,
Xiong
,
Z.
, and
Xia
,
Q.
,
2014
, “
Friction and Wear Behaviors of B4C/6061Al Composite
,”
Mater. Des.
,
60
, pp.
669
677
.
58.
Rao
,
T. B.
,
2021
, “
Microstructural, Mechanical, and Wear Properties Characterization and Strengthening Mechanisms of Al7075/SiCnp Composites Processed Through Ultrasonic Cavitation Assisted Stir-Casting
,”
Mater. Sci. Eng. A
,
805
, p.
140553
.
59.
He
,
X.
,
Song
,
R. G.
, and
Kong
,
D. J.
,
2019
, “
Effects of TiC on the Microstructure and Properties of TiC/TiAl Composite Coating Prepared by Laser Cladding
,”
Opt. Laser Technol.
,
112
, pp.
339
348
.
60.
Stack
,
M. M.
, and
Peña
,
D.
,
2001
, “
Mapping Erosion of Ni–Cr/WC-Based Composites at Elevated Temperatures: Some Recent Advances
,”
Wear
,
250
(
251
), pp.
1433
1443
.
61.
Hefnawy
,
A.
,
Elkhoshkhany
,
N.
, and
Essam
,
A.
,
2018
, “
Ni–TiN and Ni–Co–TiN Composite Coatings for Corrosion Protection: Fabrication and Electrochemical Characterization
,”
J. Alloys Compd.
,
735
, pp.
600
606
.
62.
Liu
,
Y. H.
,
Guo
,
Z. X.
,
Yang
,
Y.
,
Wang
,
H. Y.
,
Hu
,
J. D.
,
Li
,
Y. X.
,
Chumakov
,
A. N.
, and
Bosak
,
N. A.
,
2006
, “
Laser (a Pulsed Nd:YAG) Cladding of AZ91D Magnesium Alloy With Al and Al2O3 Powders
,”
Appl. Surf. Sci.
,
253
(
4
), pp.
1722
1728
.
63.
Dobrzański
,
L. A.
,
Pakuła
,
D.
,
Křiž
,
A.
,
Soković
,
M.
, and
Kopač
,
J.
,
2006
, “
Tribological Properties of the PVD and CVD Coatings Deposited Onto the Nitride Tool Ceramics
,”
J. Mater. Process. Technol.
,
175
(
1–3
), pp.
179
185
.
64.
Qin
,
J.
,
Long
,
Y.
,
Zeng
,
J.
, and
Wu
,
S.
,
2014
, “
Continuous and Varied Depth-of-Cut Turning of Gray Cast Iron by Using Uncoated and TiN/Al2O3 Coated Silicon Nitride-Based Ceramic Tools
,”
Ceram. Int.
,
40
(
8 PART A
), pp.
12245
12251
.
65.
Zhu
,
S.
,
Yu
,
Y.
,
Zhang
,
B.
,
Zhang
,
Z.
,
Yan
,
X.
, and
Wang
,
Z.
,
2020
, “
Microstructure and Wear Behaviour of In-Situ TiN–Al2O3 Reinforced CoCrFeNiMn High-Entropy Alloys Composite Coatings Fabricated by Plasma Cladding
,”
Mater. Lett.
,
272
, p.
127870
.
66.
Su
,
J. F.
,
Yu
,
D.
,
Nie
,
X.
, and
Hu
,
H.
,
2011
, “
Inclined Impact-Sliding Wear Tests of TiN/Al2O3/TiCN Coatings on Cemented Carbide Substrates
,”
Surf. Coat. Technol.
,
206
(
7
), pp.
1998
2004
.
67.
Ji
,
H.
,
Xia
,
L.
,
Ma
,
X.
, and
Sun
,
Y.
,
2000
, “
Tribological Performance of Ti–6Al–4V Plasma-Based Ion Implanted With Nitrogen
,”
Wear
,
246
(
1–2
), pp.
40
45
.
68.
Huang
,
J.
,
Liu
,
S.
,
Yu
,
S.
,
Yu
,
X.
,
Chen
,
H.
, and
Fan
,
D.
,
2020
, “
Arc Deposition of Wear Resistant Layer TiN on Ti6Al4V Using Simultaneous Feeding of Nitrogen and Wire
,”
Surf. Coat. Technol.
,
381
, p.
125141
.
69.
Gao
,
Q.
,
Yan
,
H.
,
Qin
,
Y.
,
Zhang
,
P.
,
Guo
,
J.
,
Chen
,
Z.
, and
Yu
,
Z.
,
2019
, “
Laser Cladding Ti–Ni/TiN/TiW + TiS/WS2 Self-Lubricating Wear Resistant Composite Coating on Ti–6Al–4V Alloy
,”
Opt. Laser Technol.
,
113
, pp.
182
191
.
70.
Wu
,
Y.
,
Wang
,
A. H.
,
Zhang
,
Z.
,
Xia
,
H. B.
, and
Wang
,
Y. N.
,
2014
, “
Wear Resistance of In Situ Synthesized Titanium Compound Coatings Produced by Laser Alloying Technique
,”
Surf. Coat. Technol.
,
258
, pp.
711
715
.
71.
Weng
,
F.
,
Yu
,
H.
,
Chen
,
C.
, and
Dai
,
J.
,
2015
, “
Microstructures and Wear Properties of Laser Cladding Co-Based Composite Coatings on Ti–6Al–4V
,”
Mater. Des.
,
80
, pp.
174
181
.
You do not currently have access to this content.