Abstract

The rolling element slip of an NU215 cylindrical roller bearing fitted with four cage types was studied under various operating conditions. In comparison, a specially designed full complement bearing with the same principal dimensions was also tested as an alternative. Unlike the load zone width, the acceleration zone width was found to be independent of the applied radial force, and when the dynamic force was introduced, the load zone slip was increased. For the full complement bearing, the rollers were found to stall completely in the unloaded zone resulting in a 100% roller slip at the beginning of the acceleration zone. This behavior was also confirmed by using a high-speed camera. For the tested cages, the roller-guidance under a vertically radial force pointing downwards resulted in a secondary load zone where the weight of the cage forces the rollers to contact the rotating inner ring once more leading to decreased overall slip values compared to outer ring guidance while the polyamide introduces higher cage/roller interactions leading to higher load zone slip as well as a wider load zone.

References

1.
Stuhler
,
P.
, and
Nagler
,
N.
,
2021
, “
Stand der Technik: Anschmierungen in Radial-Zylinderrollenlagern. Definition, Mechanismus, Einflüsse, Abhilfen und Potenziale
,”
Forsch. Ingenieurwesen/Eng. Res.
,
86
, pp.
1
20
.
2.
Hiltscher, and Gerhard
,
1989
,
Anschmierungen bei Wälzlagern: Ein Beitrag zur Theoretischen und Experimentellen Lösung des Problems
,
FAU Erlangen-Nürnberg
,
Germany
, pp.
1
198
.
3.
Hamer
,
C.
,
1991
,
Smearing in Rolling Element Bearings
,
Imperial College
,
London
, pp.
21
206
.
4.
Fowell
,
M.
,
Ioannides
,
S.
, and
Kadiric
,
A.
,
2014
, “
An Experimental Investigation Into the Onset of Smearing Damage in Nonconformal Contacts With Application to Roller Bearings
,”
Tribol. Trans.
,
57
(
3
), pp.
472
488
.
5.
Tassone
,
B. A.
,
1975
, “
Roller Bearing Slip and Skidding Damage
,”
J. Aircr.
,
12
(
4
), pp.
281
287
.
6.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings—Part I: Cylindrical Roller Bearing Analysis
,”
ASME J. Lubr. Tech.
,
101
(
3
), pp.
293
302
.
7.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings—Part II: Cylindrical Roller Bearing Results
,”
ASME J. Lubr. Tech.
,
101
(
3
), pp.
305
311
.
8.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings—Part III: Ball Bearing Analysis
,”
ASME J. Lubr. Tech.
,
101
(
3
), pp.
312
318
.
9.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings—Part IV: Ball Bearing Results
,”
ASME J. Lubr. Tech.
,
101
(
3
), pp.
319
326
.
10.
Harris
,
T. A.
,
1966
, “
An Analytical Method to Predict Skidding in High Speed Roller Bearings
,”
ASLE Trans.
,
9
(
3
), pp.
229
241
.
11.
Tung Liao
,
N.
, and
Lin
,
J. F.
,
2002
, “
Ball Bearing Skidding Under Radial and Axial Loads
,”
Mech. Mach. Theory
,
37
(
1
), pp.
91
113
.
12.
Tu
,
W.
,
Shao
,
Y.
, and
Mechefske
,
C. K.
,
2012
, “
An Analytical Model to Investigate Skidding in Rolling Element Bearings During Acceleration
,”
J. Mech. Sci. Technol.
,
26
(
8
), pp.
2451
2458
.
13.
Cocks
,
M.
, and
Tallian
,
T. E.
,
1971
, “
Sliding Contacts in Rolling Bearings
,”
ASLE Trans.
,
14
(
1
), pp.
32
40
.
14.
Rowe
,
F. D.
,
1971
, “
Diagnosis of Rolling Contact Bearing Damage
,”
Tribology
,
4
(
3
), pp.
137
146
.
15.
Qian
,
W.
,
2013
,
Dynamic Simulation of Cylindrical Roller Bearings
,
Rheinisch-Westfälische Technische Hochschule Aachen
,
Germany
, pp.
1
117
.
16.
Evans
,
R. D.
,
Barr
,
T. A.
,
Houpert
,
L.
, and
Boyd
,
S. V.
,
2013
, “
Prevention of Smearing Damage in Cylindrical Roller Bearings
,”
Tribol. Trans.
,
56
(
5
), pp.
703
716
.
17.
Scherb
,
B. J.
, and
Zech
,
J.
,
2001
, “
A Study on the Smearing and Slip Behaviour of Radial Cylindrical Roller Bearings
,”
Schriftenr. der Georg. Nürnb.
,
1
(
5
), pp.
1
19
.
18.
Scherb
,
B. J.
,
2001
, “
Anschmier- und Schlupfverhalten von Zylinderrollenlagern Teil II: Diskussion der Ergebnisse Sowie Deren Anwendungen
,”
Antriebstechnik
,
40
(
12
), pp.
35
38
.
19.
Scherb
,
B. J.
,
2001
, “
Anschmier- und Schlupfverhalten von Zylinderrollenlagern Teil I: Kinematisches Verhalten in Bezug auf den Schadenmechanismus der Anschmierungen
,”
Antriebstechnik
,
40
(
11
), pp.
55
58
.
20.
Bowman
,
W. F.
, and
Stachowiak
,
G. W.
,
1996
, “
A Review of Scuffing Models
,”
Tribol. Lett.
,
2
(
2
), pp.
113
131
.
21.
Cutiongco
,
E. C.
, and
Chung
,
Y. W.
,
1994
, “
Prediction of Scuffing Failure Based on Competitive Kinetics of Oxide Formation and Removal: Application to Lubricated Sliding of AISI 52100 Steel on Steel
,”
Tribol. Trans.
,
37
(
3
), pp.
622
628
.
22.
Bujoreanu
,
C.
,
Cretu
,
S.
, and
Nelias
,
D.
,
2003
, “
Scuffing Behaviour in Angular Contact Ball-Bearings
,”
Ann. Univ. “Dunărea Jos“ Galaţi Fascicle Viii Tribol.
,
II
(
2003
), pp.
33
39
.
23.
Dyson
,
A.
,
1975
, “
Scuffing—A Review
,”
Tribol. Int
,
8
(
2
), pp.
77
87
.
24.
Guo
,
Y.
, and
Keller
,
J.
,
2020
, “
Validation of Combined Analytical Methods to Predict Slip in Cylindrical Roller Bearings
,”
Tribol. Int
,
148
, p.
106347
.
25.
Creju
,
S.
,
Bercea
,
I.
, and
Mitu
,
N.
,
1995
, “
A Dynamic Analysis of Tapered Roller Bearing Under Fully Flooded Conditions Part 1: Theoretical Formulation
,”
Wear
,
188
(
1–2
), pp.
1
10
.
26.
Creju
,
S.
,
Mitu
,
N.
, and
Bercea
,
I.
,
1995
, “
A Dynamic Analysis of Tapered Roller Bearings Under Fully Flooded Conditions Part 2: Results
,”
Wear
,
188
(
1–2
), pp.
11
18
.
27.
Bajer
,
P.
,
2016
,
Einflussgrößen auf das Schlupfverhalten von Wälzlagern in Generatorgetrieben
,
TU Kaiserslautern
,
Germany
, pp.
1
201
.
28.
DIN ISO 21940-11:2017-03, Mechanical Vibration—Rotor Balancing—Part 11: Procedures and Tolerances for Rotors With Rigid Behaviour (ISO 21940-11:2016)
.
29.
Tarigan
,
B.
,
Schwarze
,
H.
,
Loos
,
J.
, and
Blass
,
T.
,
2017
, “
Prüfstand zur Erprobung der WEC-Bildung an Wälzlagern Unter Drehdynamik
,”
GfT—Gesellsschaft für Tribol.—Tribol.
,
58
(
2017
), pp.
1
10
.
30.
Dawoud
,
M.
,
Beitler
,
S.
,
Schwarze
,
H.
, and
Loos
,
J.
,
2020
, “
WEC Formation Under High Dynamic Operation Conditions
,”
Tribologie-Fachtagung, GfT-e.V. 2020
,
61
(
Online
), pp.
19/1
9
.
31.
Vaes
,
D.
,
Guo
,
Y.
,
Tesini
,
P.
, and
Keller
,
J.
,
2019
, “
Investigation of Roller Sliding in Wind Turbine Gearbox High-Speed-Shaft Bearings
www.nrel.gov/publications
32.
Hamrock
,
B. J.
,
Schmid
,
S. R.
, and
Jacobson
,
B. O.
,
2004
,
Fundamentals of Fluid Film Lubrication
,
CRC Press
,
Boca Raton, FL
, pp.
1
728
.
33.
Rumbarger
,
J. H.
,
Filetti
,
E. G.
, and
Gubernick
,
D.
,
1973
, “
Gas Turbine Engine Mainshaft Roller Bearing-System Analysis
,”
J. Tribol.
,
95
(
4
), pp.
401
416
.
34.
Gupta
,
P. K.
,
Dill
,
J. F.
,
Artuso
,
J. W.
, and
Forster
,
N. H.
,
1986
, “
Ball Bearing Response to Cage Unbalance
,”
ASME J. Tribol.
,
108
(
3
), pp.
462
466
.
35.
Munro
,
G. J.
,
Watters
,
R. B.
, and
Roberts
,
E. W.
,
2007
,
The Impact of Cage Design on Ball Bearing Torque Behaviour
,
Eur. Sp. Agency, (Special Publ. ESA SP, (SP-653)
,
USA
, pp.
1
8
.
36.
Niu
,
L.
,
Cao
,
H.
,
He
,
Z.
, and
Li
,
Y.
,
2016
, “
An Investigation on the Occurrence of Stable Cage Whirl Motions in Ball Bearings Based on Dynamic Simulations
,”
Tribol. Int.
,
103
, pp.
12
24
.
37.
Merriman
,
T. L.
, and
Kannel
,
J. W.
,
1988
, “
Cage Stability Analysis for SSME HPOTP Bearings
,”
NASA, Marshall Space Flight Center, Adv. Earth-to-Orbit Propul. Technol.
,
1
(
1
), pp.
200
212
.
38.
Gupta
,
P. K.
,
1988
, “
Frictional Instabilities in Ball Bearings
,”
Tribol. Trans.
,
31
(
2
), pp.
258
266
.
39.
Gupta
,
P. K.
,
1990
, “
On the Frictional Instabilities in a Cylindrical Roller Bearing
,”
Tribol. Trans.
,
33
(
3
), pp.
395
401
.
40.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings Part IV: Ball Bearing Results
,”
J. Tribol.
,
101
(
3
), pp.
319
326
.
41.
Ghaisas
,
N.
,
Wassgren
,
C. R.
, and
Sadeghi
,
F.
,
2004
, “
Cage Instabilities in Cylindrical Roller Bearings
,”
J. Tribol.
,
126
(
4
), pp.
681
689
.
42.
Liu
,
Y.
,
Chen
,
Z.
,
Tang
,
L.
, and
Zhai
,
W.
,
2021
, “
Skidding Dynamic Performance of Rolling Bearing With Cage Flexibility Under Accelerating Conditions
,”
Mech. Syst. Signal Process.
,
150
, p.
107257
.
43.
Ashtekar
,
A.
, and
Sadeghi
,
F.
,
2012
, “
A New Approach for Including Cage Flexibility in Dynamic Bearing Models by Using Combined Explicit Finite and Discrete Element Methods
,”
ASME J. Tribol.
,
134
(
4
), p.
041502
.
You do not currently have access to this content.