Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This paper investigates the effects of a 6-hour direct aging heat treatment at 490 °C on the mechanical, tribological, and microstructure characteristics of laser powder bed fused maraging 300 steels, which is produced at various laser energy densities. After direct aging heat treatment, the grain boundaries become irregular and vague due to the residual stress releasing, squeezing of precipitates into the grain boundaries, and phase transformations. The XRD analysis reveals the reverted austenite (γ′) phase forms during aging treatment due to the inevitable reversion of metastable martensite to the stable reverted γ′ phase. The heat-treated samples' microhardness rises with rising the laser energy density (LED) from 61.41 to 92.10 J/mm3 due to a decrease in the reversed austenite phase and a further rise in LED decreases the microhardness of heat-treated samples due to a rise in the reversed austenite phase after heat treatment. The heat-treated sample produced at LED of 92.10 J/mm3 shows maximum yield, ultimate tensile strengths, and minimum elongation percentage due to its high microhardness, and the fractography results show the failure mode as a mixed brittle and ductile fracture. The wear-rate of the heat-treated additively manufactured maraging 300 steel decreases as the LED increases from 61.41 to 92.1 J/mm3 and a further rise in LED from 92.10 J/mm3 to 166.66 J/mm3, the wear-rate increases. The wear-rate rises with a rise in sliding velocity from 1.5–3.5 m/s. The dominant wear mechanism was observed as abrasion with small grooves and saplings.

References

1.
Dai
,
D.
, and
Gu
,
D.
,
2014
, “
Thermal Behavior and Densification Mechanism During Selective Laser Melting of Copper Matrix Composites: Simulation and Experiments
,”
Mater. Des.
,
55
, pp.
482
491
.
2.
Gu
,
D. D.
,
Meiners
,
W.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms
,”
Int. Mater. Rev.
,
57
(
3
), pp.
133
164
.
3.
Zhang
,
Q.
,
Chen
,
J.
,
Guo
,
P.
,
Tan
,
H.
,
Lin
,
X.
, and
Huang
,
W.
,
2015
, “
Texture and Microstructure Characterization in Laser Additive Manufactured Ti–6Al–2Zr–2Sn–3Mo–1.5 Cr–2Nb Titanium Alloy
,”
Mater. Des.
,
88
, pp.
550
557
.
4.
Thompson
,
S. M.
,
Bian
,
L.
,
Shamsaei
,
N.
, and
Yadollahi
,
A.
,
2015
, “
An Overview of Direct Laser Deposition for Additive Manufacturing; Part I: Transport Phenomena, Modeling and Diagnostics
,”
Addit. Manuf.
,
8
, pp.
36
62
.
5.
Herzog
,
D.
,
Seyda
,
V.
,
Wycisk
,
E.
, and
Emmelmann
,
C.
,
2016
, “
Additive Manufacturing of Metals
,”
Acta Mater.
,
117
, pp.
371
392
.
6.
Huang
,
S. H.
,
Liu
,
P.
,
Mokasdar
,
A.
, and
Hou
,
L.
,
2013
, “
Additive Manufacturing and Its Societal Impact: A Literature Review
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5–8
), pp.
1191
1203
.
7.
Berman
,
B.
,
2012
, “
3-D Printing: The New Industrial Revolution
,”
Business Horizons
,
55
(
2
), pp.
155
162
.
8.
Kizhakkinan
,
U.
,
Seetharaman
,
S.
,
Raghavan
,
N.
, and
Rosen
,
D. W.
,
2023
, “
Laser Powder Bed Fusion Additive Manufacturing of Maraging Steel: A Review
,”
ASME J. Manuf. Sci. Eng.
,
145
(
11
), p.
110801
.
9.
Tan
,
C.
,
Zhou
,
K.
,
Ma
,
W.
, and
Zeng
,
D.
,
2019
, “
Research Progress of Laser Additive Manufacturing of Maraging Steels
,”
Acta Metall. Sin.
,
56
(
1
), pp.
36
52
.
10.
Wang
,
Y.
,
Luo
,
L.
,
Liu
,
T.
,
Wang
,
B.
,
Luo
,
L.
,
Zhao
,
J.
,
Wang
,
L.
,
Su
,
Y.
,
Guo
,
J.
, and
Fu
,
H.
,
2021
, “
Tuning Process Parameters to Optimize Microstructure and Mechanical Properties of Novel Maraging Steel Fabricated by Selective Laser Melting
,”
Mater. Sci. Eng.: A
,
823
, p.
141740
.
11.
Li
,
G.
,
Guo
,
C.
,
Guo
,
W. F.
,
Lu
,
H. X.
,
Wen
,
L. J.
,
Hu
,
X. G.
, and
Zhu
,
Q.
,
2020
, “
Influence of Selective Laser Melting Process Parameters on Densification Behavior, Surface Quality and Hardness of 18Ni300 Steel
,”
Key Eng. Mater.
,
861
, pp.
77
82
.
12.
Bai
,
Y.
,
Zhao
,
C.
,
Wang
,
D.
, and
Wang
,
H.
,
2022
, “
Evolution Mechanism of Surface Morphology and Internal Hole Defect of 18Ni300 Maraging Steel Fabricated by Selective Laser Melting
,”
J. Mater. Process. Technol.
,
299
, p.
117328
.
13.
Ferreira
,
D. F. S.
,
Miranda
,
G.
,
Oliveira
,
F. J.
, and
Oliveira
,
J. M.
,
2021
, “
Predictive Models for an Optimized Fabrication of 18Ni300 Maraging Steel for Moulding and Tooling by Selective Laser Melting
,”
J. Manuf. Process.
,
70
, pp.
46
54
.
14.
Casalino
,
G.
,
Campanelli
,
S. L.
,
Contuzzi
,
N.
, and
Ludovico
,
A. D.
,
2015
, “
Experimental Investigation and Statistical Optimisation of the Selective Laser Melting Process of a Maraging Steel
,”
Opt. Laser Technol.
,
65
, pp.
151
158
.
15.
Koutny
,
D.
,
Pantelejev
,
L.
,
Tomes
,
J.
, and
Palousek
,
D.
,
2016
, “
Comparison of Selective Laser Melting of 18NI Maraging Steel by PXL and M2 Cusing
,”
Laser
,
180
, p.
220
.
16.
Guo
,
Z.
,
Sha
,
W.
, and
Li
,
D.
,
2004
, “
Quantification of Phase Transformation Kinetics of 18 wt% Ni C250 Maraging Steel
,”
Mater. Sci. Eng.: A
,
373
(
1–2
), pp.
10
20
.
17.
Tewari
,
R.
,
Mazumder
,
S.
,
Batra
,
I. S.
,
Dey
,
G. K.
, and
Banerjee
,
S.
,
2000
, “
Precipitation in 18 wt% Ni Maraging Steel of Grade 350
,”
Acta Mater.
,
48
(
5
), pp.
1187
1200
.
18.
Rombouts
,
M.
,
Kruth
,
J. P.
,
Froyen
,
L.
, and
Mercelis
,
P.
,
2006
, “
Fundamentals of Selective Laser Melting of Alloyed Steel Powders
,”
CIRP Ann.
,
55
(
1
), pp.
187
192
.
19.
Rao
,
B. S.
, and
Rao
,
T. B.
,
2022
, “
Effect of Process Parameters on Powder Bed Fusion Maraging Steel 300: A Review
,”
Lasers Manuf. Mater. Process.
,
9
(
3
), pp.
338
375
.
20.
Pereloma
,
E. V.
,
Shekhter
,
A.
,
Miller
,
M. K.
, and
Ringer
,
S. P.
,
2004
, “
Ageing Behaviour of an Fe–20Ni–1.8 Mn–1.6 Ti–0.59 Al (wt%) Maraging Alloy: Clustering, Precipitation and Hardening
,”
Acta Mater.
,
52
(
19
), pp.
5589
5602
.
21.
Vasudevan
,
V. K.
,
Kim
,
S. J.
, and
Wayman
,
C. M.
,
1990
, “
Precipitation Reactions and Strengthening Behavior in 18 Wt Pct Nickel Maraging Steels
,”
Metall. Trans. A
,
21
(
10
), pp.
2655
2668
.
22.
Rao
,
M. N.
,
2022
, “
Progress in Understanding the Metallurgy of 18% Nickel Maraging Steels
,”
Int. J. Mater. Res.
,
97
(
11
), pp.
1594
1607
.
23.
Pereloma
,
E. V.
,
Stohr
,
R. A.
,
Miller
,
M. K.
, and
Ringer
,
S. P.
,
2009
, “
Observation of Precipitation Evolution in Fe-Ni-Mn-Ti-Al Maraging Steel by Atom Probe Tomography
,”
Metall. Mater. Trans. A
,
40
(
13
), pp.
3069
3075
.
24.
Jägle
,
E. A.
,
Choi
,
P. P.
,
Van Humbeeck
,
J.
, and
Raabe
,
D.
,
2014
, “
Precipitation and Austenite Reversion Behavior of a Maraging Steel Produced by Selective Laser Melting
,”
J. Mater. Res.
,
29
(
17
), pp.
2072
2079
.
25.
Zheng
,
B.
,
Zhou
,
Y.
,
Smugeresky
,
J. E.
,
Schoenung
,
J. M.
, and
Lavernia
,
E. J.
,
2008
, “
Thermal Behavior and Microstructure Evolution During Laser Deposition With Laser-Engineered Net Shaping: Part II. Experimental Investigation and Discussion
,”
Metall. Mater. Trans. A
,
39
(
9
), pp.
2237
2245
.
26.
Casati
,
R.
,
Lemke
,
J. N.
,
Tuissi
,
A.
, and
Vedani
,
M.
,
2016
, “
Aging Behaviour and Mechanical Performance of 18-Ni 300 Steel Processed by Selective Laser Melting
,”
Metals
,
6
(
9
), p.
218
.
27.
Yu
,
J. H.
,
Jin
,
Q. Y.
,
Ha
,
K.
, and
Lee
,
W.
,
2023
, “
Influence of Several Heat Treatments on Residual Stress in Laser Powder Bed-Fused Maraging 18Ni-300 Steel
,”
Appl. Sci.
,
13
(
11
), p.
6572
.
28.
Mutua
,
J.
,
Nakata
,
S.
,
Onda
,
T.
, and
Chen
,
Z. C.
,
2018
, “
Optimization of Selective Laser Melting Parameters and Influence of Post Heat Treatment on Microstructure and Mechanical Properties of Maraging Steel
,”
Mater. Des.
,
139
, pp.
486
497
.
29.
Song
,
J.
,
Tang
,
Q.
,
Feng
,
Q.
,
Ma
,
S.
,
Setchi
,
R.
,
Liu
,
Y.
,
Han
,
Q.
,
Fan
,
X.
, and
Zhang
,
M.
,
2019
, “
Effect of Heat Treatment on Microstructure and Mechanical Behaviours of 18Ni-300 Maraging Steel Manufactured by Selective Laser Melting
,”
Opt. Laser Technol.
,
120
, p.
105725
.
30.
Mooney
,
B.
,
Kourousis
,
K. I.
, and
Raghavendra
,
R.
,
2019
, “
Plastic Anisotropy of Additively Manufactured Maraging Steel: Influence of the Build Orientation and Heat Treatments
,”
Addit. Manuf.
,
25
, pp.
19
31
.
31.
Oliveira
,
A. R.
,
Diaz
,
J. A. A.
,
Nizes
,
A. D. C.
,
Jardini
,
A. L.
, and
Del Conte
,
E. G.
,
2021
, “
Investigation of Building Orientation and Aging on Strength–Stiffness Performance of Additively Manufactured Maraging Steel
,”
J. Mater. Eng. Perform.
,
30
(
2
), pp.
1479
1489
.
32.
Vishwakarma
,
J.
,
Chattopadhyay
,
K.
, and
Santhi Srinivas
,
N. C.
,
2020
, “
Effect of Build Orientation on Microstructure and Tensile Behaviour of Selectively Laser Melted M300 Maraging Steel
,”
Mater. Sci. Eng.: A
,
798
, p.
140130
.
33.
Yin
,
S.
,
Chen
,
C.
,
Yan
,
X.
,
Feng
,
X.
,
Jenkins
,
R.
,
O'Reilly
,
P.
,
Liu
,
M.
,
Li
,
H.
, and
Lupoi
,
R.
,
2018
, “
The Influence of Aging Temperature and Aging Time on the Mechanical and Tribological Properties of Selective Laser Melted Maraging 18Ni-300 Steel
,”
Addit. Manuf.
,
22
, pp.
592
600
.
34.
Bai
,
Y.
,
Wang
,
D.
,
Yang
,
Y.
, and
Wang
,
H.
,
2019
, “
Effect of Heat Treatment on the Microstructure and Mechanical Properties of Maraging Steel by Selective Laser Melting
,”
Mater. Sci. Eng.: A
,
760
, pp.
105
117
.
35.
Bai
,
Y.
,
Zhao
,
C.
,
Yang
,
J.
,
Hong
,
R.
,
Weng
,
C.
, and
Wang
,
H.
,
2021
, “
Microstructure and Machinability of Selective Laser Melted High-Strength Maraging Steel With Heat Treatment
,”
J. Mater. Process. Technol.
,
288
, p.
116906
.
36.
Murashima
,
M.
,
Imaizumi
,
Y.
,
Kawaguchi
,
M.
,
Umehara
,
N.
,
Tokoroyama
,
T.
,
Saito
,
T.
,
Takeshima
,
M.
,
Tsukiyama
,
Y.
, and
Nitta
,
I.
,
2021
, “
Realization of a Novel Morphing Surface Using Additive Manufacturing and Its Active Control in Friction
,”
ASME J. Tribol.
,
143
(
5
), p.
051104
.
37.
Renner
,
P.
,
Jha
,
S.
,
Chen
,
Y.
,
Raut
,
A.
,
Mehta
,
S. G.
, and
Liang
,
H.
,
2021
, “
A Review on Corrosion and Wear of Additively Manufactured Alloys
,”
ASME J. Tribol.
,
143
(
5
), p.
050802
.
38.
Thasleem
,
P.
,
Kuriachen
,
B.
,
Kumar
,
D.
,
Ahmed
,
A.
, and
Joy
,
M. L.
,
2021
, “
Effect of Heat Treatment and Electric Discharge Alloying on the Tribological Performance of Selective Laser Melted AlSi10Mg
,”
ASME J. Tribol.
,
143
(
5
), p.
051111
.
39.
Koli
,
Y.
,
Aravindan
,
S.
, and
Rao
,
P. V.
,
2023
, “
Wear Characteristics of Wire-Arc Additive Manufactured SS308L
,”
ASME J. Tribol.
,
145
(
3
), p.
031706
.
40.
Kumar
,
J. K.
,
Rao
,
T. B.
, and
Krishna
,
K. R.
,
2023
, “
The Microstructural Properties and Tribological Performance of Al2O3 and TiN Nanoparticles Reinforced Ti–6Al–4 V Composite Coating Deposited on AISI304 Steel by TIG Cladding
,”
ASME J. Tribol.
,
145
(
1
), p.
011401
.
41.
Basha
,
M. M.
,
Sankar
,
M. R.
,
Murthy
,
T. S. R. C.
, and
Majumdar
,
S.
,
2024
, “
High-Temperature Tribology of Selective Laser-Melted Titanium Alloys: Role of Adhesive Wear
,”
ASME J. Tribol.
,
146
(
6
), p.
061701
.
42.
Tan
,
H.
,
Cheng
,
J.
,
Wang
,
S.
,
Zhu
,
S.
,
Yu
,
Y.
,
Qiao
,
Z.
, and
Yang
,
J.
,
2018
, “
Tribological Behavior of Al–20Si–5Fe–2Ni Alloy at Elevated Temperatures Under Dry Sliding
,”
ASME J. Tribol.
,
140
(
3
), p.
031609
.
43.
Samuel
,
S. C.
,
Chodancar
,
Y.
,
Kanther
,
S.
, and
Ram Prabhu
,
T.
,
2021
, “
High-Temperature Dry Sliding Wear Behavior of Ti–10V–2Fe–3Al
,”
ASME J. Tribol.
,
143
(
12
), p.
121701
.
44.
Philip
,
J. T.
,
Kumar
,
D.
,
Mathew
,
J.
, and
Kuriachen
,
B.
,
2020
, “
Experimental Investigations on the Tribological Performance of Electric Discharge Alloyed Ti–6Al–4 V at 200–600 C
,”
ASME J. Tribol.
,
142
(
6
), p.
061702
.
45.
Kumar
,
N.
,
Gautam
,
G.
,
Gautam
,
R. K.
,
Mohan
,
A.
, and
Mohan
,
S.
,
2017
, “
High-Temperature Tribology of AA5052/ZrB2 PAMCs
,”
ASME J. Tribol.
,
139
(
1
), p.
011601
.
46.
Sardar
,
S.
,
Kumar Karmakar
,
S.
, and
Das
,
D.
,
2018
, “
Tribological Properties of Al 7075 Alloy and 7075/Al2O3 Composite Under two-Body Abrasion: A Statistical Approach
,”
ASME J. Tribol.
,
140
(
5
), p.
051602
.
47.
Yan
,
X.
,
Chen
,
C.
,
Zhao
,
R.
,
Ma
,
W.
,
Bolot
,
R.
,
Wang
,
J.
,
Ren
,
Z.
,
Liao
,
H.
, and
Liu
,
M.
,
2019
, “
Selective Laser Melting of WC Reinforced Maraging Steel 300: Microstructure Characterization and Tribological Performance
,”
Surf. Coat. Technol.
,
371
, pp.
355
365
.
48.
Yang
,
Y.
,
Li
,
X.
,
Khonsari
,
M. M.
,
Zhu
,
Y.
, and
Yang
,
H.
,
2020
, “
On Enhancing Surface Wear Resistance via Rotating Grains During Selective Laser Melting
,”
Addit. Manuf.
,
36
, p.
101583
.
49.
Ahmed
,
G. M. S.
,
Badruddin
,
I. A.
,
Tirth
,
V.
,
Algahtani
,
A.
, and
Ali
,
M. A.
,
2020
, “
Wear Resistance of Maraging Steel Developed by Direct Metal Laser Sintering
,”
Mater. Express
,
10
(
7
), pp.
1079
1090
.
50.
Tonolini
,
P.
,
Marchini
,
L.
,
Montesano
,
L.
,
Gelfi
,
M.
, and
Pola
,
A.
,
2022
, “
Wear and Corrosion Behavior of 18Ni-300 Maraging Steel Produced by Laser-Based Powder Bed Fusion and Conventional Route
,”
Proc. Struct. Integr.
,
42
, pp.
821
829
.
51.
Bai
,
Y.
,
Yang
,
Y.
,
Wang
,
D.
, and
Zhang
,
M.
,
2017
, “
Influence Mechanism of Parameters Process and Mechanical Properties Evolution Mechanism of Maraging Steel 300 by Selective Laser Melting
,”
Mater. Sci. Eng.: A
,
703
, pp.
116
123
.
52.
Tan
,
C.
,
Zhou
,
K.
,
Ma
,
W.
,
Zhang
,
P.
,
Liu
,
M.
, and
Kuang
,
T.
,
2017
, “
Microstructural Evolution, Nanoprecipitation Behavior and Mechanical Properties of Selective Laser Melted High-Performance Grade 300 Maraging Steel
,”
Mater. Des.
,
134
, pp.
23
34
.
53.
Król
,
M.
,
Snopiński
,
P.
, and
Czech
,
A.
,
2020
, “
The Phase Transitions in Selective Laser-Melted 18-NI (300-Grade) Maraging Steel
,”
J. Therm. Anal. Calorim.
,
142
(
2
), pp.
1011
1018
.
54.
Viswanathan
,
U. K.
,
Dey
,
G. K.
, and
Sethumadhavan
,
V.
,
2005
, “
Effects of Austenite Reversion During Overageing on the Mechanical Properties of 18 Ni (350) Maraging Steel
,”
Mater. Sci. Eng.: A
,
398
(
1–2
), pp.
367
372
.
55.
Pardal
,
J. M.
,
Tavares
,
S. S. M.
,
Terra
,
V. F.
,
Da Silva
,
M. R.
, and
Dos Santos
,
D. R.
,
2005
, “
Modeling of Precipitation Hardening During the Aging and Overaging of 18Ni–Co–Mo–Ti Maraging 300 Steel
,”
J. Alloys Compd.
,
393
(
1–2
), pp.
109
113
.
56.
Magnee
,
A.
,
Drapier
,
J. M.
,
Coutsouradis
,
D.
,
Habrakan
,
L.
, and
Dumont
,
J.
,
1974
,
Cobalt-Containing High-Strength Steels: A Critical Review of the Physical Metallurgy of Cobalt-Containing High-Strength Steels, and a Survey of Their Processing, Properties and Uses
,
Centre d'Information du Cobalt
.
57.
Schnitzer
,
R.
,
Radis
,
R.
,
Nöhrer
,
M.
,
Schober
,
M.
,
Hochfellner
,
R.
,
Zinner
,
S.
,
Povoden-Karadeniz
,
E.
,
Kozeschnik
,
E.
, and
Leitner
,
H.
,
2010
, “
Reverted Austenite in PH 13-8 Mo Maraging Steels
,”
Mater. Chem. Phys.
,
122
(
1
), pp.
138
145
.
58.
Simchi
,
A.
, and
Asgharzadeh
,
H.
,
2004
, “
Densification and Microstructural Evaluation During Laser Sintering of M2 High Speed Steel Powder
,”
Mater. Sci. Technol.
,
20
(
11
), pp.
1462
1468
.
59.
Zhou
,
F.
,
Wu
,
R.
,
Xie
,
W.
, and
Zhang
,
L.
,
2020
, “
Effect of Aging Treatment on Microstructure and Properties of Additively Manufactured Maraging Steel
,”
Ironmaking Steelmaking
,
47
(
9
), pp.
980
985
.
60.
Dehgahi
,
S.
,
Sanjari
,
M.
,
Ghoncheh
,
M. H.
,
Amirkhiz
,
B. S.
, and
Mohammadi
,
M.
,
2021
, “
Concurrent Improvement of Strength and Ductility in Heat-Treated C300 Maraging Steels Produced by Laser Powder Bed Fusion Technique
,”
Addit. Manuf.
,
39
, p.
101847
.
61.
Kim
,
D.
,
Kim
,
T.
,
Ha
,
K.
,
Oak
,
J.-J.
,
Jeon
,
J. B.
,
Park
,
Y.
, and
Lee
,
W.
,
2020
, “
Effect of Heat Treatment Condition on Microstructural and Mechanical Anisotropies of Selective Laser Melted Maraging 18Ni-300 Steel
,”
Metals
,
10
(
3
), p.
410
.
62.
Qiu
,
C.
,
Adkins
,
N. J. E.
, and
Attallah
,
M. M.
,
2016
, “
Selective Laser Melting of Invar 36: Microstructure and Properties
,”
Acta Mater.
,
103
, pp.
382
395
.
63.
Sha
,
W.
,
2013
, “
High-Strength Low-Alloy Steel. In Steels
,”
Mater. Sci. Struct. Eng.
, pp.
27
58
.
64.
Szajewski
,
B. A.
,
Crone
,
J. C.
, and
Knap
,
J.
,
2020
, “
Analytic Model for the Orowan Dislocation-Precipitate Bypass Mechanism
,”
Materialia
,
11
, p.
100671
.
65.
Monkova
,
K.
,
Zetkova
,
I.
,
Kučerová
,
L.
,
Zetek
,
M.
,
Monka
,
P.
, and
Daňa
,
M.
,
2019
, “
Study of 3D Printing Direction and Effects of Heat Treatment on Mechanical Properties of MS1 Maraging Steel
,”
Arch. Appl. Mech.
,
89
(
5
), pp.
791
804
.
You do not currently have access to this content.