Abstract

In this work, a semi-analytical model replicating 3D rolling contact problems with elastic coating layers has been proposed. The dimension reduced boundary element-based model rests on the conventional half-space assumptions, with influence coefficients describing the relationship between the stress and the displacement. In this model, the influence coefficient describes the stress–strain relationship for multilayered materials, which is derived from the corresponding frequency–response functions. The governing equations for 3D rolling contact problems are solved efficiently using the conjugate gradient method with the classical fast Fourier transformation (FFT)-based technique to accelerate the calculation of the integral equation relating the stresses to the strains, and all the possible creepages, i.e., the longitudinal, lateral, and spin creepages, are considered. The results obtained with the present numerical model are compared with existing results, and good agreement is found. Some selected results are presented to show the effect of the material elasticity and the thickness of the coating, and the layering, on the traction distribution and the traction coefficient under different creepage combinations. In this way, this work provides important information related to the composition of layered coatings in rolling contact applications.

References

1.
Zhong-Yu
,
P.
,
Bin-Shi
,
X.
,
Hai-Dou
,
W.
, and
Xiao-Xiao
,
Y.
,
2020
, “
Rolling Contact Fatigue Behavior of Thermal-Sprayed Coating: A Review
,”
Crit. Rev. Solid State Mater. Sci.
,
45
(
6
), pp.
429
456
.
2.
Stewart
,
S.
, and
Ahmed
,
R.
,
2002
, “
Rolling Contact Fatigue of Surface Coatings—A Review
,”
Wear
,
253
(
11–12
), pp.
1132
1144
.
3.
Chiang
,
M. H.
,
Yeh
,
C. C.
, and
Lee
,
C. L.
,
2020
, “
Improvement in the Abrasive Wear Resistance of an Aluminum Alloy Casting for a Continuously-Variable Transmission Using Heat Treatment and Pulsed Anodizing
,”
Wear
,
442
, p.
203137
.
4.
Tyreas
,
G. C.
, and
Nikolakopoulos
,
P. G.
,
2016
, “
Development and Friction Estimation of the Half-Toroidal Continuously Variable Transmission: A Wind Generator Application
,”
Simul. Modell. Pract. Theory
,
66
, pp.
63
80
.
5.
Nyqvist
,
J.
,
Kadiric
,
A.
,
Ioannides
,
S.
, and
Sayles
,
R.
,
2015
, “
Semi-Analytical Model for Rough Multilayered Contacts
,”
Tribol. Int.
,
87
, pp.
98
112
.
6.
Silva
,
F. J. G.
,
Casais
,
R. C. B.
,
Baptista
,
A. P. M.
,
Marques
,
M. J.
,
Sousa
,
V. M. C.
, and
Alexandre
,
R.
,
2022
, “
Comparative Study of the Wear Behavior of B4C Monolayered and CrN/CrCN/DLC Multilayered Physical Vapor Deposition Coatings Under High Contact Loads: An Experimental Analysis
,”
ASME J. Tribol.
,
144
(
3
), p.
031701
.
7.
Xiao
,
L.
,
Xu
,
Y.
, and
Chen
,
Z.
,
2022
, “
A Numerical Simulation of Fretting Wear Considering the Dynamic Evolution of Debris for the Coated Contact Surface
,”
ASME J. Tribol.
,
144
(
4
), p.
021502
.
8.
Liu
,
B.
,
Bruni
,
S.
, and
Lewis
,
R.
,
2022
, “
Numerical Calculation of Wear in Rolling Contact Based on the Archard Equation: Effect of Contact Parameters and Consideration of Uncertainties
,”
Wear
,
490
, p.
204188
.
9.
Zhao
,
Y.
,
Xi
,
Y. H.
,
Mao
,
J. H.
, and
Wong
,
P. P. L.
,
2016
, “
Stripe Theory Based Numerical Method for Solving Asymmetrical Hysteresis of Friction Force in Linear Rolling Guideways
,”
Sci. China: Technol. Sci.
,
59
(
9
), pp.
1320
1327
.
10.
Pletz
,
M.
,
Meyer
,
K. A.
,
Künstner
,
D.
,
Scheriau
,
S.
, and
Daves
,
W.
,
2019
, “
Cyclic Plastic Deformation of Rails in Rolling/Sliding Contact–Quasistatic FE Calculations Using Different Plasticity Models
,”
Wear
,
436
, p.
202992
.
11.
Xi
,
Y.
,
Almqvist
,
A.
,
Shi
,
Y.
,
Mao
,
J.
, and
Larsson
,
R.
,
2017
, “
Linear Complementarity Framework for 3D Steady-State Rolling Contact Problems Including Creepages With Isotropic and Anisotropic Friction for Circular Hertzian Contact
,”
Tribol. Trans.
,
60
(
5
), pp.
832
844
.
12.
Kalker
,
J. J.
,
2013
,
Three-Dimensional Elastic Bodies in Rolling Contact
,
Springer Science & Business Media
,
Dordrecht, Netherlands
.
13.
Yang
,
Z.
,
Deng
,
X.
, and
Li
,
Z.
,
2019
, “
Numerical Modeling of Dynamic Frictional Rolling Contact With an Explicit Finite Element Method
,”
Tribol. Int.
,
129
, pp.
214
231
.
14.
Rodríguez-Tembleque
,
L.
,
Abascal
,
R.
, and
Aliabadi
,
M. H.
,
2010
, “
A Boundary Element Formulation for Wear Modeling on 3D Contact and Rolling-Contact Problems
,”
Int. J. Solids Struct.
,
47
(
18–19
), pp.
2600
2612
.
15.
Wang
,
Z.
,
Jin
,
X.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2012
, “
A Numerical Approach for Analyzing Three-Dimensional Steady-State Rolling Contact Including Creep Using a Fast Semi-Analytical Method
,”
Tribol. Trans.
,
55
(
4
), pp.
446
457
.
16.
Bhardawaj
,
S.
,
Sharma
,
R. C.
, and
Sharma
,
S. K.
,
2019
, “
Development and Advancement in the Wheel-Rail Rolling Contact Mechanics
,”
OP Conf. Ser.: Mater. Sci. Eng.
,
691
(
1
), p.
012034
.
17.
Meierhofer
,
A.
,
Hardwick
,
C.
,
Lewis
,
R.
,
Six
,
K.
, and
Dietmaier
,
P.
,
2014
, “
Third Body Layer—Experimental Results and a Model Describing Its Influence on the Traction Coefficient
,”
Wear
,
314
(
1–2
), pp.
148
154
.
18.
Guler
,
M. A.
,
Adibnazari
,
S.
, and
Alinia
,
Y.
,
2012
, “
Tractive Rolling Contact Mechanics of Graded Coatings
,”
Int. J. Solids Struct.
,
49
(
6
), pp.
929
945
.
19.
Alinia
,
Y.
,
Guler
,
M. A.
, and
Adibnazari
,
S.
,
2014
, “
On the Contact Mechanics of a Rolling Cylinder on a Graded Coating. Part 1: Analytical Formulation
,”
Mech. Mater.
,
68
, pp.
207
216
.
20.
Guler
,
M. A.
,
Alinia
,
Y.
, and
Adibnazari
,
S.
,
2013
, “
On the Contact Mechanics of a Rolling Cylinder on a Graded Coating. Part 2: Numerical Results
,”
Mech. Mater.
,
66
, pp.
134
159
.
21.
Zhang
,
M.
, and
Yan
,
Z.
,
2022
, “
Effects of Near-Surface Composites on Frictional Rolling Contact Solved by a Semi-Analytical Model
,”
ASME J. Tribol.
,
144
(
2
).
22.
Wallace
,
E. R.
,
2022
, “
On the Rolling Contact Between Multi-Layered Bodies, Application to Tirepavement Modelling
,”
Ph.D. thesis
,
Université de Lyon
,
Lyon
.
23.
Fu
,
P.
,
Zhao
,
J.
,
Zhang
,
X.
,
Miao
,
H.
,
Wen
,
Z.
,
Kang
,
G.
, and
Kan
,
Q.
,
2023
, “
Three-Dimensional Tractive Rolling Contact Analysis of Functionally Graded Coating-Substrate Systems With Interfacial Imperfection and Frictional Anisotropy
,”
Compos. Struct.
,
307
, p.
116671
.
24.
Wallace
,
E. R.
,
Chaise
,
T.
,
Duval
,
A.
, and
Nelias
,
D.
,
2023
, “
Transient Tractive Rolling Contact Between Elastically Dissimilar and Multi-Layered Bodies
,”
Int. J. Solids Struct.
,
265
, p.
112124
.
25.
Xi
,
Y.
,
Björling
,
M.
, and
Almqvist
,
A.
,
2021
, “
A Numerical Model for Solving Three-Dimensional Rolling Contact Problems With Elastic Coating Layers
,”
Tribol. Lett.
,
69
(
4
), pp.
1
15
.
26.
Yu
,
C.
,
Wang
,
Z.
, and
Wang
,
Q. J.
,
2014
, “
Analytical Frequency Response Functions for Contact of Multilayered Materials
,”
Mech. Mater.
,
76
, pp.
102
120
.
27.
Wang
,
Z.
,
Yu
,
C.
, and
Wang
,
Q.
,
2015
, “
Model for Elastohydrodynamic Lubrication of Multilayered Materials
,”
ASME J. Tribol.
,
137
(
1
), p.
011501
.
28.
Dong
,
Q.
,
Wang
,
Z.
,
Zhu
,
D.
,
Meng
,
F.
,
Xu
,
L.
, and
Zhou
,
K.
,
2019
, “
A Model of Mixed Lubrication Based on Non-Normalized Discretization and Its Application for Multilayered Materials
,”
ASME J. Tribol.
,
141
(
4
), p.
042101
.
29.
Bazrafshan
,
M.
,
De Rooij
,
M. B.
,
De Vries
,
E. G.
, and
Schipper
,
D. J.
,
2020
, “
Evaluation of Pre-Sliding Behavior at a Rough Interface: Modeling and Experiment
,”
ASME J. Appl. Mech.
,
87
(
4
), p.
041006
.
30.
Sandeep
,
C. S.
, and
Senetakis
,
K.
,
2019
, “
An Experimental Investigation of the Microslip Displacement of Geological Materials
,”
Comput. Geotech.
,
107
, pp.
55
67
.
31.
Ahmadi
,
A.
, and
Sadeghi
,
F.
,
2022
, “
A Three-Dimensional Finite Element Damage Mechanics Model to Simulate Fretting Wear of Hertzian Line and Circular Contacts in Partial Slip Regime
,”
ASME J. Tribol.
,
144
(
5
), p.
051602
.
32.
Liu
,
S.
,
Wang
,
Q.
, and
Liu
,
G.
,
2000
, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
,
243
(
1–2
), pp.
101
111
.
33.
Yu
,
Y.
, and
Suh
,
J.
,
2022
, “
Numerical Analysis of Three-Dimensional Thermo-elastic Rolling Contact Under Steady-State Conditions
,”
Friction
,
10
(
4
), pp.
630
644
.
34.
O’sullivan
,
T. C.
, and
King
,
R. B.
,
1988
, “
Sliding Contact Stress Field Due to a Spherical Indenter on a Layered Elastic Half-Space
,”
ASME J. Tribol.
,
110
(
2
), pp.
235
240
.
35.
Cai
,
S.
, and
Bhushan
,
B.
,
2005
, “
A Numerical Three-Dimensional Contact Model for Rough, Multilayered Elastic/Plastic Solid Surfaces
,”
Wear
,
259
(
7–12
), pp.
1408
1423
.
36.
Draganis
,
A.
,
2017
, “
Finite Element Modeling of Transient Thermomechanical Rolling Contact Featuring Mixed Control of the Rigid Body Motion
,”
ASME J. Tribol.
,
139
(
1
), p.
011503
.
37.
Kasyap
,
S. S.
, and
Senetakis
,
K.
,
2019
, “
Experimental Investigation of the Coupled Influence of Rate of Loading and Contact Time on the Frictional Behavior of Quartz Grain Interfaces Under Varying Normal Load
,”
Int. J. Geomech.
,
19
(
10
), p.
04019112
.
38.
Kasyap
,
S. S.
, and
Senetakis
,
K.
,
2021
, “
Micromechanical-Based Experimental and Analytical Studies on Rate Effects and Stick-Slip Instability of Smooth Quartz Surfaces in the Presence of Plastic and Non-Plastic Gouges
,”
Int. J. Numer. Anal. Methods Geomech.
,
45
(
6
), pp.
776
793
.
You do not currently have access to this content.