Abstract

Finite line contacts in rolling element bearings are usually under the regime of elastohydrodynamic lubrication (EHL). To obtain deeper insights into bearing performance, it is necessary to directly couple EHL contact models into bearing models. However, the existing EHL contact models are either too time consuming to be employed in the bearing model or too simplified to consider tilting contact behaviors and actual roller profiles. A fast calculation approach for EHL finite line contacts is proposed by combining the empirical film thickness formulas that have been developed for decades and an improved slicing technique that considers the coupling behaviors between slices. The proposed approach can not only predict the contact stiffness (normal contact stiffness and tilting contact stiffness) and contact states (contact pressure and film thickness) accurately but also is universal for different profiled contacts and material properties. The proposed approach costs only a few milliseconds for a single load case, which enables it to be directly employed in bearing models. Besides, the proposed approach is more of a framework, the use of which can be extended by involving different film thickness formulas and correction factors to consider complicated EHL behaviors such as thermal effects, shear thinning effects, surface roughness, lubricant starvation, and so on.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Jablonka
,
K.
,
Glovnea
,
R.
, and
Bongaerts
,
J.
,
2018
, “
Quantitative Measurements of Film Thickness in a Radially Loaded Deep-Groove Ball Bearing
,”
Tribol. Int.
,
119
, pp.
239
249
.
2.
Qiu
,
L.
,
Liu
,
S.
,
Chen
,
X.
, and
Wang
,
Z.
,
2022
, “
Lubrication and Loading Characteristics of Cylindrical Roller Bearings With Misalignment and Roller Modifications
,”
Tribol. Int.
,
165
, p.
107291
.
3.
Tsuha
,
N. A. H.
, and
Cavalca
,
K. L.
,
2020
, “
Stiffness and Damping of Elastohydrodynamic Line Contact Applied to Cylindrical Roller Bearing Dynamic Model
,”
J. Sound. Vib.
,
481
, p.
115444
.
4.
Hou
,
Y.
,
Wang
,
X.
,
Yang
,
D.
, and
Xiao
,
Z.
,
2023
, “
A Combined Experimental and Analytical Method to Determine the EHL Friction Force Distribution Between Rollers and Outer Raceway in a Cylindrical Roller Bearing
,”
Friction
,
11
, pp.
1455
1469
.
5.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1960
, “
The Effect of Material Properties on the Lubrication of Elastic Rollers
,”
J. Mech. Eng. Sci.
,
2
(
3
), pp.
188
194
.
6.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1976
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part 1—Theoretical Formulation
,”
J. Lubr. Technol. Trans. ASME
,
98
(
2
), pp.
223
229
.
7.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
2000
,
Multi-level Methods in Lubrication
,
Elsevier
,
Amsterdam
.
8.
Habchi
,
W.
,
2018
,
Finite Element Modeling of Elastohydrodynamic Lubrication Problems
,
Wiley
,
Chichester
.
9.
Hansen
,
E.
,
Kacan
,
A.
,
Frohnapfel
,
B.
, and
Codrignani
,
A.
,
2022
, “
An EHL Extension of the Unsteady Fbns Algorithm
,”
Tribol. Lett.
,
70
, p.
80
.
10.
Tian
,
J.
,
Zhang
,
C.
,
Liang
,
H.
, and
Guo
,
D.
,
2022
, “
Simulation of the Load Reduction Process of High-Speed Angular Contact Ball Bearing With Coupling Model of Dynamics and Thermo-Elastohydrodynamic Lubrication
,”
Tribol. Int.
,
165
, p.
107292
.
11.
Xiao
,
Z.
,
Shi
,
X.
,
Wang
,
X.
,
Ma
,
X.
, and
Han
,
Y.
,
2021
, “
Lubrication Analysis and Wear Mechanism of Heavily Loaded Herringbone Gears With Profile Modifications in Full Film and Mixed Lubrication Point Contacts
,”
Wear
,
477
, p.
203790
.
12.
Peng
,
Y.
,
Zhao
,
N.
,
Zhang
,
M.
,
Li
,
W.
, and
Zhou
,
R.
,
2018
, “
Non-Newtonian Thermal Elastohydrodynamic Simulation of Helical Gears Considering Modification and Misalignment
,”
Tribol. Int.
,
124
, pp.
46
60
.
13.
Habchi
,
W.
, and
Issa
,
J.
,
2013
, “
Fast and Reduced Full-System Finite Element Solution of Elastohydrodynamic Lubrication Problems: Line Contacts
,”
Adv. Eng. Softw.
,
56
, pp.
51
62
.
14.
Habchi
,
W.
,
2014
, “
Reduced Order Finite Element Model for Elastohydrodynamic Lubrication: Circular Contacts
,”
Tribol. Int.
,
71
, pp.
98
108
.
15.
Maier
,
D.
,
Hager
,
C.
,
Hetzler
,
H.
,
Fillot
,
N.
,
Vergne
,
P.
,
Dureisseix
,
D.
, and
Seemann
,
W.
,
2015
, “
A Nonlinear Model Order Reduction Approach to the Elastohydrodynamic Problem
,”
Tribol. Int.
,
82
(
Part B
), pp.
484
492
.
16.
Scurria
,
L.
,
Fauconnier
,
D.
,
Jiranek
,
P.
, and
Tamarozzi
,
T.
,
2021
, “
A Galerkin/Hyper-Reduction Technique to Reduce Steady-State Elastohydrodynamic Line Contact Problems
,”
Comput. Methods. Appl. Mech. Eng.
,
386
(
1
), p.
114132
.
17.
Marian
,
M.
,
Mursak
,
J.
,
Bartz
,
M.
,
Profito
,
F. J.
,
Rosenkranz
,
A.
, and
Wartzack
,
S.
,
2023
, “
Predicting Ehl Film Thickness Parameters by Machine Learning Approaches
,”
Friction
,
11
(
6
), pp.
992
1013
.
18.
Hess
,
N.
, and
Shang
,
L.
,
2022
, “
Development of a Machine Learning Model for Elastohydrodynamic Pressure Prediction in Journal Bearings
,”
ASME J. Tribol.
,
144
(
8
), p.
081603
.
19.
Grubin
,
A.
,
1949
,
Fundamentals of the Hydrodynamic Theory of Lubrication of Heavily Loaded Cylindrical Surfaces
, Book No. 30,
Central Scientific Research Institute for Technology and Mechanical Engineering
,
Moscow
.
20.
Dowson
,
D.
, and
Toyoda
,
S.
,
1979
, “
Central Film Thickness Formula for Elastohydrodynamic Line Contacts
,”
Proceeding of the 5th Leeds-Lyon Symposium on Tribology
,
Leeds, UK
,
Sept. 2–4
, pp.
60
65
.
21.
Pan
,
P.
, and
Hamrock
,
B. J.
,
1989
, “
Simple Formulas for Performance Parameters Used in Elastohydrodynamically Lubricated Line Contacts
,”
ASME J. Tribol.
,
111
(
2
), pp.
246
251
.
22.
Masjedi
,
M.
, and
Khonsari
,
M. M.
,
2012
, “
Film Thickness and Asperity Load Formulas for Line-Contact Elastohydrodynamic Lubrication With Provision for Surface Roughness
,”
ASME J. Tribol.
,
134
(
1
), p.
011503
.
23.
Dowson
,
D.
,
Higginson
,
G. R.
, and
Whitaker
,
A. V.
,
1962
, “
Elasto-Hydrodynamic Lubrication: A Survey of Isothermal Solutions
,”
J. Mech. Eng. Sci.
,
4
(
2
), pp.
121
126
.
24.
Jacobson
,
B. O.
, and
Hamrock
,
B. J.
,
1983
, “
Non-Newtonian Fluid Model Incorporated Into Elastohydrodynamic Lubrication of Rectangular Contacts
,”
Mech. Eng.
,
105
(
12
), pp.
92
92
.
25.
Johnson
,
K. L.
,
1970
, “
Regimes of Elastohydrodynamic Lubrication
,”
J. Mech. Eng. Sci.
,
12
(
1
), pp.
9
16
.
26.
Moes
,
H.
,
1992
, “
Optimum Similarity Analysis With Applications to Elastohydrodynamic Lubrication
,”
Wear
,
159
(
1
), pp.
57
66
.
27.
Moes
,
H.
,
2000
,
Lubrication and Beyond
,
University of Twente
,
Enschede
.
28.
Greenwood
,
J. A.
, and
Kauzlari
,
J. J.
,
1973
, “
Inlet Shear Heating in Elastohydrodynamic Lubrication
,”
J. Lubr. Technol. Trans. ASME
,
95
(
4
), pp.
417
426
.
29.
Wilson
,
W. R. D.
, and
Sheu
,
S.
,
1983
, “
Effect of Inlet Shear Heating Due to Sliding on Elastohydrodynamic Film Thickness
,”
ASME J. Lubr. Technol.
,
105
(
2
), pp.
187
188
.
30.
Pandey
,
R. K.
, and
Ghosh
,
M. K.
,
1996
, “
Thermal Effects on Film Thickness and Traction in Rolling/Sliding EHL Line Contacts—An Accurate Inlet Zone Analysis
,”
Wear
,
192
(
1
), pp.
118
127
.
31.
Jang
,
J. Y.
,
Khonsari
,
M. M.
, and
Bair
,
S.
,
2007
, “
On the Elastohydrodynamic Analysis of Shear-Thinning Fluids
,”
Proc. R. Soc. A-Math. Phys. Eng. Sci.
,
463
(
2088
), pp.
3271
3290
.
32.
Bair
,
S.
,
1998
, “
Elastohydrodynamic Film Forming With Shear Thinning Liquids
,”
ASME J. Tribol.
,
120
(
2
), pp.
173
178
.
33.
Bair
,
S.
,
2018
, “
Generalized Newtonian Viscosity Functions for Hydrodynamic Lubrication
,”
Tribol. Int.
,
117
, pp.
15
23
.
34.
Bair
,
S.
, and
Winer
,
W. O.
,
1997
, “
A Simple Formula for EHD Film Thickness of Non-Newtonian Liquids
,”
Proceedings of the 23rd Leeds-Lyon Symposium on Tribology
,
Leeds, UK
,
Sept. 10–13
,
Vol. 32
, pp.
235
241
.
35.
Bair
,
S.
,
2005
, “
Shear Thinning Correction for Rolling/Sliding Elastohydrodynamic Film Thickness
,”
Proc. Inst. Mech. Eng. Part J-J. Eng. Tribol.
,
219
(
1
), pp.
69
74
.
36.
Jang
,
J. Y.
,
Khonsari
,
M. M.
, and
Bair
,
S.
,
2008
, “
Correction Factor Formula to Predict the Central and Minimum Film Thickness for Shear-Thinning Fluids in EHL
,”
ASME J. Tribol.
,
130
(
2
), p.
024501
.
37.
Habchi
,
W.
,
Bair
,
S.
,
Qureshi
,
F.
, and
Covitch
,
M.
,
2013
, “
A Film Thickness Correction Formula for Double-Newtonian Shear-Thinning in Rolling EHL Circular Contacts
,”
Tribol. Lett.
,
50
(
1
), pp.
59
66
.
38.
Wang
,
S.
,
Cusano
,
C.
, and
Conry
,
T. F.
,
1991
, “
Thermal Analysis of Elastohydrodynamic Lubrication of Line Contacts Using the Ree-Eyring Fluid Model
,”
ASME J. Tribol.
,
113
(
2
), pp.
232
242
.
39.
Kumar
,
P.
, and
Khonsari
,
M. M.
,
2008
, “
Combined Effects of Shear Thinning and Viscous Heating on EHL Characteristics of Rolling/Sliding Line Contacts
,”
ASME J. Tribol.
,
130
(
4
), p.
041505
.
40.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1977
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part IV—Starvation Results
,”
ASME J. Lubr. Technol.
,
99
(
1
), pp.
15
23
.
41.
Marian
,
M.
,
Bartz
,
M.
,
Wartzack
,
S.
, and
Rosenkranz
,
A.
,
2020
, “
Non-Dimensional Groups, Film Thickness Equations and Correction Factors for Elastohydrodynamic Lubrication: A Review
,”
Lubricants
,
8
(
10
), p.
95
.
42.
Poplawski
,
J. V.
,
1972
, “
Slip and Cage Forces in a High-Speed Roller Bearing
,”
ASME J. Lubr. Technol.
,
94
(
2
), pp.
143
150
.
43.
Houpert
,
L.
,
2010
, “
CAGEDYN: A Contribution to Roller Bearing Dynamic Calculations Part I: Basic Tribology Concepts
,”
Tribol. Trans.
,
53
(
1
), pp.
1
9
.
44.
Houpert
,
L.
,
2010
, “
Cagedyn: A Contribution to Roller Bearing Dynamic Calculations Part II: Description of the Numerical Tool and Its Outputs
,”
Tribol. Trans.
,
53
(
1
), pp.
10
21
.
45.
Wijnant
,
Y. H.
,
1998
, “
Contact Dynamics in the Field of Elastohydrodynamic Lubrication
,” Ph.D. thesis, Research ut, Graduation ut, Universiteit Twente, Enschede, The Netherlands.
46.
Wensing
,
J. A.
,
1998
, “
On the Dynamics of Ball Bearings
,” Ph.D. thesis, Research ut, Graduation ut, University of Twente, Enschede, The Netherlands.
47.
Nonato
,
F.
, and
Cavalca
,
K. L.
,
2014
, “
An Approach for Including the Stiffness and Damping of Elastohydrodynamic Point Contacts in Deep Groove Ball Bearing Equilibrium Models
,”
J. Sound. Vib.
,
333
(
25
), pp.
6960
6978
.
48.
Tsuha
,
N. A. H.
,
Nonato
,
F.
, and
Cavalca
,
K. L.
,
2017
, “
Formulation of a Reduced Order Model for the Stiffness on Elastohydrodynamic Line Contacts Applied to Cam-Follower Mechanism
,”
Mech. Mach. Theory.
,
113
, pp.
22
39
.
49.
Tsuha
,
N. A. H.
, and
Cavalca
,
K. L.
,
2020
, “
Finite Line Contact Stiffness Under Elastohydrodynamic Lubrication Considering Linear and Nonlinear Force Models
,”
Tribol. Int.
,
146
, p.
106219
.
50.
Yang
,
D.
,
Wang
,
X.
, and
Hou
,
Y.
,
2023
, “
An Improved Slicing Technique for Finite Line Contacts in the Modeling of Rolling Element Bearings
,”
ASME J. Tribol.
,
145
(
8
), p.
084302
.
51.
Hou
,
Y.
,
Wang
,
X.
,
Que
,
H. B.
,
Guo
,
R. B.
,
Lin
,
X. H.
,
Jin
,
S. Q.
,
Wu
,
C. P.
,
Zhou
,
Y.
, and
Liu
,
X. L.
,
2021
, “
Variation in Contact Load at the Most Loaded Position of the Outer Raceway of a Bearing in High-Speed Train Gearbox
,”
Acta. Mech. Sin.
,
37
(
11
), pp.
1683
1695
.
52.
Demul
,
J. M.
,
Kalker
,
J. J.
, and
Fredriksson
,
B.
,
1986
, “
The Contact Between Arbitrarily Curved Bodies of Finite Dimensions
,”
ASME J. Tribol.
,
108
(
1
), pp.
140
148
.
53.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1959
, “
A Numerical Solution to the Elasto-Hydrodynamic Problem
,”
J. Mech. Eng. Sci.
,
1
(
1
), pp.
6
15
.
54.
Boussinesq
,
J.
,
1885
,
Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques
,
Gauthier-Villars
,
Paris
.
55.
Hertz
,
H.
,
1882
, “
Ueber die berührung fester elastischer körper
,”
J. für die Reine und Angew. Math. (Crelles Journal)
,
1882
(
92
), pp.
156
171
.
56.
Palmgren
,
A.
,
1959
,
Ball and Roller Bearing Engineering
,
SKF Industries Inc.
,
Philadelphia, PA
.
57.
ISO
,
2008
, “ISO/TS 16281:2008 Rolling Bearings—Methods for Calculating the Modified Reference Rating Life for Universally Loaded Bearings,” ISO.
58.
Dowson
,
D.
,
1967
, “
Elastohydrodynamics
,”
Proc. Inst. Mech. Eng. Conf. Proc.
,
182
(
1
), pp.
151
167
.
59.
Roelands
,
C. J. A.
,
Vlugter
,
J. C.
, and
Waterman
,
H. I.
,
1963
, “
The Viscosity-Temperature-Pressure Relationship of Lubricating Oils and Its Correlation With Chemical Constitution
,”
J. Fluid. Eng.
,
85
(
4
), pp.
601
607
.
60.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1966
,
Elasto-Hydrodynamic Lubrication: The Fundamentals of Roller and Gear Lubrication
,
Pergamon Press
,
London
.
You do not currently have access to this content.