Abstract

Surface modification is the major means to improving the wear resistance of copper alloys. In this study, Cu–Mo coatings were prepared on Cu–Cr–Zr alloy by laser cladding, and the high-temperature tribological properties against 7075 aluminum alloy were explored. The results show that the coatings are a two-phase structure of Mo encapsulated in Cu-mesh. The hardness and resistivity of the coatings are 61–73 Hb and (3.2–6.3) × 10−8 Ωm, respectively. The wear resistance of the coatings is determined by the hardness, which is related to the Mo content at lower temperatures, and it is controlled by the tribo-oxides layer composed of copper and molybdenum oxides at higher temperatures. As the temperature increases, the main wear mechanism of the coatings changes from abrasive wear to adhesive wear.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Xie
,
H. B.
,
Yang
,
H. Y.
,
Yu
,
J.
,
Gao
,
M. Y.
,
Shou
,
J. D.
,
Fang
,
Y. T.
,
Liu
,
J. B.
, and
Wang
,
H. T.
,
2021
, “
Research Progress on Advanced Rail Materials for Electromagnetic Railgun Technology
,”
Def. Technol.
,
17
(
2
), pp.
429
439
.
2.
Guo
,
S.
,
Zhang
,
X.
,
Shi
,
C.
,
Zhao
,
D.
,
Liu
,
E.
,
He
,
C.
, and
Zhao
,
N.
,
2022
, “
Comprehensive Performance Regulation of Cu Matrix Composites With Graphene Nanoplatelets In Situ Encapsulated Al2O3 Nanoparticles as Reinforcement
,”
Carbon
,
188
, pp.
81
94
.
3.
Ueno
,
T.
,
Kadono
,
K.
,
Yamaguchi
,
S.
,
Aoyagi
,
M.
,
Tanaka
,
A.
, and
Morita
,
N.
,
2010
, “
Relationship Between Contact Voltage Drop and Frictional Coefficient Under High-Current Siding Contact
,”
IEEJ Trans. Electr. Electron. Eng.
,
5
(
4
), pp.
486
492
.
4.
Zuo
,
X.
,
Xie
,
W.
, and
Zhou
,
Y.
,
2022
, “
Influence of Electric Current on the Wear Topography of Electrical Contact Surfaces
,”
ASME J. Tribol.
,
144
(
7
), p.
071702
.
5.
Zhu
,
R.
,
Zuo
,
X.
,
Zhou
,
Y.
, and
Xie
,
W.
,
2023
, “
Effect of Electric Current and Graphite Content on the Wear Behaviors of Copper/Graphite Composites
,”
ASME J. Tribol.
,
145
(
5
), p.
051702
.
6.
Lv
,
X.
,
Zhan
,
Z.
, and
Cao
,
H.
,
2022
, “
Microstructure Evolution and Mechanical Properties of Needle-Like ZrB2 Reinforced Cu Composites Manufactured by Laser Direct Energy Deposition
,”
Micromachines
,
13
(
2
), p.
212
.
7.
Chen
,
Z.
,
Fan
,
H.
,
Tan
,
H.
,
Chen
,
W.
,
Zhu
,
S.
,
Cheng
,
J.
,
Zhang
,
Y.
, and
Yang
,
J.
,
2023
, “
Effects of Graphite Contents on the Microstructure Evolution, Mechanical Properties and High Temperature Tribological Behavior of Cu–Ni–Al/Gr Solid-Lubricating Composites
,”
Tribol. Int.
,
179
, p.
108193
.
8.
Zhang
,
Y.
,
Descartes
,
S.
, and
Chromik
,
R. R.
,
2019
, “
Influence of WC on Third Body Behaviour During Fretting of Cold-Sprayed Cu-MoS2­­-WC Composites
,”
Tribol. Int.
,
134
, pp.
15
25
.
9.
Mi
,
P.
, and
Ye
,
F.
,
2018
, “
Wear Performance of the WC/Cu Self-Lubricating Textured Coating
,”
Vacuum
,
157
, pp.
17
20
.
10.
Mohammadi
,
E.
,
Nasiri
,
H.
,
Khaki
,
J. V.
, and
Zebarjad
,
S. M.
,
2018
, “
Copper-Alumina Nanocomposite Coating on Copper Substrate Through Solution Combustion
,”
Ceram. Int.
,
44
(
3
), pp.
3226
3230
.
11.
Zhu
,
Z.
,
Shi
,
T.
,
Chen
,
W.
,
Wang
,
L.
,
Chen
,
J.
,
Cheng
,
J.
,
Zhu
,
S.
, and
Yang
,
J.
,
2023
, “
Effect of WC-17Co Content on Microstructure, Mechanical Properties and Tribological Behavior of Low-Pressure Cold Sprayed Tin Bronze Composite Coating
,”
Surf. Coat. Technol.
,
465
, p.
129589
.
12.
Luo
,
X.
,
Yang
,
Y.
,
Sun
,
Q.
,
Yu
,
Y.
,
Huang
,
B.
, and
Chen
,
Y.
,
2012
, “
Effect of Cu/Mo Duplex Coating on the Interface and Property of SiCf/Ti6Al4V Composite
,”
Mater. Sci. Eng. A
,
535
, pp.
6
11
.
13.
Chen
,
Z.
,
Chen
,
W.
,
Zhu
,
S.
,
Cheng
,
J.
,
Tan
,
H.
, and
Yang
,
J.
,
2022
, “
Tribological Properties of Cu-25Zn-5Al-3Fe-3Mn Alloy at High Temperatures
,”
ASME J. Tribol.
,
144
(
12
), p.
121701
.
14.
Zhao
,
J.
,
Peng
,
Y.
,
Zhou
,
Q.
, and
Zou
,
K.
,
2021
, “
The Current-Carrying Tribological Properties of Cu/Graphene Composites
,”
ASME J. Tribol.
,
143
(
10
), p.
102101
.
15.
Ng
,
K. W.
,
Man
,
H. C.
,
Cheng
,
F. T.
, and
Yue
,
T. M.
,
2007
, “
Laser Cladding of Copper With Molybdenum for Wear Resistance Enhancement in Electrical Contacts
,”
Appl. Surf. Sci.
,
253
(
14
), pp.
6236
6241
.
16.
Wahl
,
K. J.
,
Seitzman
,
L. E.
,
Bolster
,
R. N.
,
Singer
,
I. L.
, and
Peterson
,
M. B.
,
1997
, “
Ion-Beam Deposited Cu-Mo Coatings as High Temperature Solid Lubricants
,”
Surf. Coat. Technol.
,
89
(
3
), pp.
245
251
.
17.
Radek
,
N.
, and
Bartkowiak
,
K.
,
2011
, “
Laser Treatment of Cu-Mo Electro-Spark Deposited Coatings
,”
Phys. Procedia
,
12
, pp.
499
505
.
18.
Islak
,
S.
,
Caligulu
,
U.
,
Hraam
,
H.
,
Özorak
,
C.
, and
Koç
,
V.
,
2019
, “
Electrical Conductivity, Microstructure and Wear Properties of Cu-Mo Coatings
,”
Res. Eng. Struct. Mater.
,
5
(
2
), pp.
137
146
.
19.
Arias-González
,
F.
,
del Val
,
J.
,
Comesaña
,
R.
,
Penide
,
J.
,
Lusquiños
,
F.
,
Quintero
,
F.
,
Riveiro
,
A.
,
Boutinguiza
,
M.
, and
Pou
,
J.
,
2017
, “
Laser Cladding of Phosphor Bronze
,”
Surf. Coat. Technol.
,
313
, pp.
248
254
.
20.
Meghwal
,
A.
,
Anupam
,
A.
,
Murty
,
B. S.
,
Berndt
,
C. C.
,
Kottada
,
R. S.
, and
Ang
,
A. S. M.
,
2020
, “
Thermal Spray High-Entropy Alloy Coatings: A Review
,”
J. Therm. Spray Technol.
,
29
(
5
), pp.
857
893
.
21.
Assadi
,
H.
,
Kreye
,
H.
,
Gärtner
,
F.
, and
Klassen
,
T.
,
2016
, “
Cold Spraying–A Materials Perspective
,”
Acta Mater.
,
116
, pp.
382
407
.
22.
Siddiqui
,
A. A.
, and
Dubey
,
A. K.
,
2021
, “
Recent Trends in Laser Cladding and Surface Alloying
,”
Opt. Laser Technol.
,
134
, p.
106619
.
23.
Yadav
,
S.
,
Paul
,
C. P.
,
Jinoop
,
A. N.
,
Rai
,
A. K.
, and
Bindra
,
K. S.
,
2020
, “
Laser Directed Energy Deposition Based Additive Manufacturing of Copper: Process Development and Material Characterizations
,”
J. Manuf. Process
,
58
, pp.
984
997
.
24.
Tiberto
,
D.
,
Klotz
,
U. E.
,
Held
,
F.
, and
Wolf
,
G.
,
2019
, “
Additive Manufacturing of Copper Alloys: Influence of Process Parameters and Alloying Elements
,”
Mater. Sci. Technol.
,
35
(
8
), pp.
969
977
.
25.
Tang
,
X.
,
Chen
,
X.
,
Sun
,
F.
,
Liu
,
P.
,
Zhou
,
H.
, and
Fu
,
S.
,
2022
, “
The Current State of CuCrZr and CuCrNb Alloys Manufactured by Additive Manufacturing: A Review
,”
Mater. Des.
,
224
, p.
111419
.
26.
Zhu
,
L.
,
Xue
,
P.
,
Lan
,
Q.
,
Meng
,
G.
,
Ren
,
Y.
,
Yang
,
Z.
,
Xu
,
P.
, and
Liu
,
Z.
,
2021
, “
Recent Research and Development Status of Laser Cladding: A Review
,”
Opt. Laser Technol.
,
138
, p.
106915
.
27.
Qi
,
Z.
,
Chen
,
C.
,
Wang
,
C.
,
Zhou
,
Z.
,
Zhou
,
J.
, and
Long
,
Y.
,
2023
, “
Effect of Different Laser Wavelengths on Laser Cladding of Pure Copper
,”
Surf. Coat. Technol.
,
454
, p.
129181
.
28.
Yang
,
Q.
,
Zhang
,
P.
,
Lu
,
Q.
,
Yan
,
H.
,
Shi
,
H.
,
Yu
,
Z.
,
Sun
,
T.
, et al
,
2024
, “
Application and Development of Blue and Green Laser in Industrial Manufacturing: A Review
,”
Opt. Laser Technol.
,
170
, p.
110202
.
29.
Dehm
,
G.
,
Medres
,
B.
,
Shepeleva
,
L.
,
Scheu
,
C.
,
Bamberger
,
M.
,
Mordike
,
B. L.
,
Mordike
,
S.
,
Ryk
,
G.
,
Halperin
,
G.
, and
Etsion
,
I.
,
1999
, “
Microstructure and Tribological Properties of Ni-Based Claddings on Cu Substrates
,”
Wear
,
225–229
, pp.
18
26
.
30.
Tan
,
H.
,
Luo
,
Z.
,
Li
,
Y.
,
Yan
,
F.
,
Duan
,
R.
, and
Huang
,
Y.
,
2015
, “
Effect of Strengthening Particles on the Dry Sliding Wear Behavior of Al2O3–M7C3/Fe Metal Matrix Composite Coatings Produced by Laser Cladding
,”
Wear
,
324–325
, pp.
36
44
.
31.
Yang
,
C.
,
Jing
,
C.
,
Fu
,
T.
,
Lin
,
T.
,
Guo
,
W.
, and
Liu
,
N.
,
2024
, “
Effect of CeO2 on the Microstructure and Properties of AlCoCrFeNi2.1 Laser Cladding Coatings
,”
J. Alloys Compd.
,
976
, p.
172948
.
32.
Ok Chwa
,
S.
,
Klein
,
D.
,
Liao
,
H.
,
Dembinski
,
L.
, and
Coddet
,
C.
,
2006
, “
Temperature Dependence of Microstructure and Hardness of Vacuum Plasma Sprayed Cu-Mo Composite Coatings
,”
Surf. Coat. Technol.
,
200
(
20–21
), pp.
5682
5686
.
33.
Aguilar
,
C.
,
Castro
,
F.
,
Martínez
,
V.
,
Guzmán
,
D.
,
de las Cuevas
,
F.
,
Lozada
,
L.
, and
Vielma
,
N.
,
2012
, “
Structural Study of Nanocrystalline Solid Solution of Cu-Mo Obtained by Mechanical Alloying
,”
Mater. Sci. Eng. A
,
548
, pp.
189
194
.
34.
Wang
,
S.
,
Pang
,
X.
,
Xu
,
Y.
,
Lu
,
H.
,
Jiang
,
P.
,
Yang
,
J.
, and
Liao
,
Z.
,
2023
, “
Microstructure, Mechanical and Tribological Properties of in Situ MoB Reinforced Cu-Al Matrix Composites
,”
Tribol. Int.
,
177
, p.
107941
.
35.
Wei
,
H.
,
Feng
,
G.
,
Li
,
X.
,
Zhan
,
W.
,
Li
,
F.
,
Dai
,
Y.
, and
Zou
,
J.
,
2023
, “
Preparation and Tribological Properties of Cr-C Reinforced Cu/Graphite Composites Decomposed In Situ by Cr2AlC
,”
Tribol. Int.
,
189
, p.
108911
.
36.
Tan
,
H.
,
Sun
,
Q.
,
Chen
,
J.
,
Zhu
,
S.
,
Cheng
,
J.
, and
Yang
,
J.
,
2023
, “
Dry Sliding Tribological Properties and Wear Mechanisms of Mo–Si–B–xTi Alloys at the Temperature Range of 25–1000 °C
,”
Tribol. Int.
,
177
, p.
107897
.
37.
Zhu
,
S.
,
Cheng
,
J.
,
Qiao
,
Z.
, and
Yang
,
J.
,
2019
, “
High Temperature Solid-Lubricating Materials: A Review
,”
Tribol. Int.
,
133
, pp.
206
223
.
38.
Liu
,
J.
,
Chen
,
W.
,
Chen
,
J.
,
Cheng
,
J.
,
Cao
,
X.
,
Zhu
,
S.
, and
Yang
,
J.
,
2023
, “
Tribological Properties of NiCrAlYTa-Ag Self-Lubricating Coatings at Wide Temperature Range by Detonation Spraying
,”
Tribol. Int.
,
186
, p.
108662
.
You do not currently have access to this content.