Abstract

The tilting-pad journal bearing in the cooling system of the nuclear power plant is equipped below the ground and vertically positioned to accomplish its function for water transfer. Usually, the loading conditions are relatively stable since the required water volume almost remains the same level during the operation, but the loading direction cannot be known in advance. Furthermore, the bearing is designed with several separate pads, which allows the bearing to support the loading flexibly. The safety application of nuclear energy requires the bearing to have a reliable ability to maintain the rotating motion of gear sets. This study develops a numerical model to simulate the mixed thermo-elastohydrodynamic lubrication for the tilting-pad journal bearing in the nuclear plant. The elastic and thermal fields are properly determined, and the induced displacement is taken into account for an accurate description of film thickness. The asperity contact due to misaligned journal is well evaluated in the local area where the lubrication film cannot separate the surfaces. A parametric study is undertaken in detail to reveal the aspects that influence bearing lubrication. The conclusions potentially provide fundamentals for further lubrication optimization of the bearing system.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Kim
,
K. S.
,
Lee
,
D. W.
,
Kim
,
M. R.
, and
Jung
,
Y. H.
,
2022
, “
Measuring the Fluid Film Thickness and Evaluation of Slope Parameter to Assess the Tribological Characteristics of Tilting Pad Bearings
,”
Measurement
,
201
, p.
111749
.
2.
Linjamaa
,
A.
,
Lehtovaara
,
A.
,
Larsson
,
R.
,
Kallio
,
M.
, and
Söchting
,
S.
,
2018
, “
Modelling and Analysis of Elastic and Thermal Deformations of a Hybrid Journal Bearing
,”
Tribol. Int.
,
118
, pp.
451
457
.
3.
Liu
,
Z.
,
Liu
,
Z.
,
Zhao
,
J.
, and
Zhang
,
G.
,
2017
, “
Study on Interactions Between Tooth Backlash and Journal Bearing Clearance Nonlinearity in Spur Gear Pair System
,”
Mech. Mach. Theory
,
107
, pp.
229
245
.
4.
Lv
,
F.
,
Rao
,
Z.
,
Ta
,
N.
, and
Jiao
,
C.
,
2017
, “
Mixed-Lubrication Analysis of Thin Polymer Film Overplayed Metallic Marine Stern Bearing Considering Wall Slip and Journal Misalignment
,”
Tribol. Int.
,
109
, pp.
390
397
.
5.
Xie
,
Z.
,
Jiao
,
J.
,
Yang
,
K.
, and
Zhang
,
H.
,
2023
, “
A State-of-Art Review on the Water-Lubricated Bearing
,”
Tribol. Int.
,
180
, p.
108276
.
6.
Li
,
B.
,
Li
,
P.
,
Zhou
,
R.
,
Feng
,
X.
, and
Zhou
,
K.
,
2022
, “
Contact Mechanics in Tribological and Contact Damage-Related Problems: A Review
,”
Tribol. Int.
,
171
, p.
107534
.
7.
Dong
,
Q.
,
Wang
,
Z.
,
Zhu
,
D.
,
Meng
,
F.
,
Xu
,
L.
, and
Zhou
,
K.
,
2019
, “
A Model of Mixed Lubrication Based on Non-Normalized Discretization and Its Application for Multilayered Materials
,”
ASME J. Tribol.
,
141
(
4
), p.
042101
.
8.
He
,
D.
,
Dong
,
Q.
, and
Zhao
,
G.
,
2021
, “
Modeling Mixed Lubrication in Point and Line Contact by Non-Normalized Discretization
,”
Int. J. Appl. Mech.
,
13
(
07
), p.
2150080
.
9.
Sander
,
D. E.
,
Allmaier
,
H.
,
Priebsch
,
H. H.
,
Reich
,
F. M.
,
Witt
,
M.
,
Skiadas
,
A.
, and
Knaus
,
O.
,
2015
, “
Edge Loading and Running-in Wear in Dynamically Loaded Journal Bearings
,”
Tribol. Int.
,
92
, pp.
395
403
.
10.
Vencl
,
A.
, and
Rac
,
A.
,
2014
, “
Diesel Engine Crankshaft Journal Bearings Failures: Case Study
,”
Eng. Fail. Anal.
,
44
, pp.
217
228
.
11.
Xiang
,
G.
,
Han
,
Y.
,
Wang
,
J.
,
Wang
,
J.
, and
Ni
,
X.
,
2019
, “
Coupling Transient Mixed Lubrication and Wear for Journal Bearing Modeling
,”
Tribol. Int.
,
138
, pp.
1
15
.
12.
Bergmann
,
P.
,
Grün
,
F.
,
Gódor
,
I.
,
Stadler
,
G.
, and
Maier Kiener
,
V.
,
2018
, “
On the Modelling of Mixed Lubrication of Conformal Contacts
,”
Tribol. Int.
,
125
, pp.
220
236
.
13.
Soltani
,
A.
, and
Naderan
,
H.
,
2021
, “
A Full 3D Computational Model for Tilting-Pad Journal Bearings and Comparing It to 2D Models
,”
Tribol. Int.
,
164
, p.
107223
.
14.
Wang
,
Z.
,
Zhang
,
J.
,
Jiang
,
Z.
,
Xiong
,
W.
, and
Mao
,
Z.
,
2021
, “
A Transient and Time Lag Deformation Alternating-Coupling Micro Elastohydrodynamic Lubrication Model
,”
Int. J. Mech. Sci.
,
210
, p.
106744
.
15.
Xiang
,
G.
, and
Han
,
Y.
,
2020
, “
Study on the Tribo-Dynamic Performances of Water-Lubricated Microgroove Bearings During Start-Up
,”
Tribol. Int.
,
151
, p.
106395
.
16.
Chen
,
Y.
,
Sun
,
Y.
, and
Chen
,
C.
,
2016
, “
Dynamic Analysis of a Planar Slider-Crank Mechanism With Clearance for a High Speed and Heavy Load Press System
,”
Mech. Mach. Theory
,
98
, pp.
81
100
.
17.
Fang
,
C.
,
Meng
,
X.
,
Zhou
,
W.
, and
Huang
,
H.
,
2021
, “
On the Tribo-Dynamic Interactions Between Piston Skirt-Liner System and Pin Assembly in a Gasoline Engine
,”
Mech. Mach. Theory
,
166
, p.
104497
.
18.
Shi
,
F.
, and
Wang
,
Q.
,
1998
, “
A Mixed-TEHD Model for Journal-Bearing Conformal Contacts—Part I: Model Formulation and Approximation of Heat Transfer Considering Asperity Contact
,”
ASME J. Tribol.
,
120
(
2
), pp.
198
205
.
19.
Wang
,
Q.
,
Shi
,
F.
, and
Lee
,
S. C.
,
1998
, “
A Mixed-TEHD Model for Journal-Bearing Conformal Contact—Part II: Contact, Film Thickness, and Performance Analyses
,”
ASME J. Tribol.
,
120
(
2
), pp.
206
213
.
20.
Shi
,
J.
,
Zhao
,
B.
,
He
,
T.
,
Tu
,
L.
,
Lu
,
X.
, and
Xu
,
H.
,
2023
, “
Tribology and Dynamic Characteristics of Textured Journal-Thrust Coupled Bearing Considering Thermal and Pressure Coupled Effects
,”
Tribol. Int.
,
180
, p.
108292
.
21.
Zhou
,
G.
,
Qiao
,
J.
,
Pu
,
W.
, and
Zhong
,
P.
,
2022
, “
Analysis of Mixed Lubrication Performance of Water-Lubricated Rubber Tilting pad Journal Bearing
,”
Tribol. Int.
,
169
, p.
107423
.
22.
Zhang
,
C.
,
Wei
,
J.
,
Wang
,
F.
,
Hou
,
S.
,
Zhang
,
A.
, and
Lim
,
T. C.
,
2020
, “
Dynamic Model and Load Sharing Performance of Planetary Gear System With Journal Bearing
,”
Mech. Mach. Theory
,
151
, p.
103898
.
23.
Xie
,
Z.
,
Yang
,
K.
,
He
,
T.
, and
Jiao
,
J.
,
2023
, “
Experimental and Theoretical Analysis on the Nonlinear Rotor-Dynamic Performances and Vibration Characteristics of a Novel Bearing-Rotor System
,”
Mech. Syst. Signal Process.
,
199
, p.
110416
.
24.
Dang
,
P. V.
,
Chatterton
,
S.
, and
Pennacchi
,
P.
,
2019
, “
The Effect of the Pivot Stiffness on the Performances of Five-Pad Tilting Pad Bearings
,”
Lubricants
,
7
(
7
), p.
6
.
25.
Bizarre
,
L.
,
Andersen
,
T. B.
,
Daniel
,
G. B.
,
Santos
,
I. F.
, and
Cavalca
,
K. L.
,
2020
, “
A 3D Approach for THD Lubrication in Tilting Pad Journal Bearing—Theory and Experiment
,”
Tribol. Trans.
,
63
(
1
), pp.
120
132
.
26.
San Andrés
,
L.
, and
Tao
,
Y.
,
2013
, “
The Role of Pivot Stiffness on the Dynamic Force Coefficients of Tilting Pad Journal Bearings
,”
ASME J. Eng. Gas. Turbines Power
,
135
(
11
), p.
112505
.
27.
Jang
,
J. Y.
, and
Khonsari
,
M. M.
,
2020
, “
On the Wear of Dynamically-Loaded Engine Bearings With Provision for Misalignment and Surface Roughness
,”
Tribol. Int.
,
141
, p.
105919
.
28.
Li
,
B.
,
Sun
,
J.
,
Zhu
,
S.
,
Fu
,
Y.
,
Zhao
,
X.
,
Wang
,
H.
,
Teng
,
Q.
,
Ren
,
Y.
,
Li
,
Y.
, and
Zhu
,
G.
,
2019
, “
Thermohydrodynamic Lubrication Analysis of Misaligned Journal Bearing Considering the Axial Movement of Journal
,”
Tribol. Int.
,
135
, pp.
397
407
.
29.
Wang
,
X.
,
Zhou
,
L.
,
Huang
,
M.
,
Yue
,
X.
, and
Xu
,
Q.
,
2018
, “
Numerical Investigation of Journal Misalignment on the Static and Dynamic Characteristics of Aerostatic Journal Bearings
,”
Measurement
,
128
, pp.
314
324
.
30.
Xiang
,
G.
,
Han
,
Y.
,
Wang
,
J.
,
Xiao
,
K.
, and
Li
,
J.
,
2019
, “
A Transient Hydrodynamic Lubrication Comparative Analysis for Misaligned Micro-Grooved Bearing Considering Axial Reciprocating Movement of Shaft
,”
Tribol. Int.
,
132
, pp.
11
23
.
31.
Xu
,
G.
,
Zhou
,
J.
,
Geng
,
H.
,
Lu
,
M.
,
Yang
,
L.
, and
Yu
,
L.
,
2015
, “
Research on the Static and Dynamic Characteristics of Misaligned Journal Bearing Considering the Turbulent and Thermohydrodynamic Effects
,”
ASME J. Tribol.
,
137
(
2
), p.
024504
.
32.
Zhang
,
X.
,
Yin
,
Z.
,
Jiang
,
D.
,
Gao
,
G.
,
Wang
,
Y.
, and
Wang
,
X.
,
2016
, “
Load Carrying Capacity of Misaligned Hydrodynamic Water-Lubricated Plain Journal Bearings With Rigid Bush Materials
,”
Tribol. Int.
,
99
, pp.
1
13
.
33.
Wang
,
Y.
,
Zhang
,
C.
,
Wang
,
Q. J.
, and
Lin
,
C.
,
2002
, “
A Mixed-TEHD Analysis and Experiment of Journal Bearings Under Severe Operating Conditions
,”
Tribol. Int.
,
35
(
6
), pp.
395
407
.
34.
He
,
T.
,
Zou
,
D.
,
Lu
,
X.
,
Guo
,
Y.
,
Wang
,
Z.
, and
Li
,
W.
,
2014
, “
Mixed-Lubrication Analysis of Marine Stern Tube Bearing Considering Bending Deformation of Stern Shaft and Cavitation
,”
Tribol. Int.
,
73
, pp.
108
116
.
35.
Xie
,
Z.
, and
Liu
,
H.
,
2020
, “
Experimental Research on the Interface Lubrication Regimes Transition of Water Lubricated Bearing
,”
Mech. Syst. Signal Proc.
,
136
, p.
106522
.
36.
Xie
,
Z.
, and
Zhu
,
W.
,
2021
, “
Theoretical and Experimental Exploration on the Micro Asperity Contact Load Ratios and Lubrication Regimes Transition for Water-Lubricated Stern Tube Bearing
,”
Tribol. Int.
,
164
, p.
107105
.
37.
Yang
,
T.
,
Han
,
Y.
,
Wang
,
Y.
, and
Xiang
,
G.
,
2021
, “
Numerical Analysis of the Transient Wear and Lubrication Behaviors of Misaligned Journal Bearings Caused by Linear Shaft Misalignment
,”
ASME J. Tribol.
,
144
(
5
), p.
051801
.
38.
Liu
,
R.
,
Jing
,
L.
,
Meng
,
X.
, and
Lyu
,
B.
,
2021
, “
Mixed Elastohydrodynamic Analysis of a Coupled Journal-Thrust Bearing System in a Rotary Compressor Under High Ambient Pressure
,”
Tribol. Int.
,
159
, p.
106943
.
39.
Gu
,
C.
,
Meng
,
X.
,
Wang
,
S.
, and
Ding
,
X.
,
2019
, “
Modeling a Hydrodynamic Bearing With Provision for Misalignments and Textures
,”
ASME J. Tribol.
,
142
(
4
), p.
041801
.
40.
Feng
,
H.
,
Jiang
,
S.
, and
Ji
,
A.
,
2019
, “
Investigations of the Static and Dynamic Characteristics of Water-Lubricated Hydrodynamic Journal Bearing Considering Turbulent, Thermohydrodynamic and Misaligned Effects
,”
Tribol. Int.
,
130
, pp.
245
260
.
41.
Gu
,
C.
,
Meng
,
X.
,
Xie
,
Y.
, and
Fan
,
J.
,
2016
, “
A Thermal Mixed Lubrication Model to Study the Textured Ring/Liner Conjunction
,”
Tribol. Int.
,
101
, pp.
178
193
.
42.
Bai
,
X.
,
Dong
,
Q.
,
Zheng
,
H.
, and
Zhou
,
K.
,
2021
, “
A Finite Element Model for Non-Newtonian Starved Thermal-Elastohydrodynamic Lubrication of 3D Line Contact
,”
Int. J. Appl. Mech.
,
13
(
09
), p.
2150107
.
43.
Ardah
,
S.
,
Profito
,
F. J.
, and
Dini
,
D.
,
2023
, “
An Integrated Finite Volume Framework for Thermal Elasto-Hydrodynamic Lubrication
,”
Tribol. Int.
,
177
, p.
107935
.
44.
Zhang
,
Z. S.
,
Yang
,
Y. M.
,
Dai
,
X. D.
, and
Xie
,
Y. B.
,
2013
, “
Effects of Thermal Boundary Conditions on Plain Journal Bearing Thermohydrodynamic Lubrication
,”
Tribol. Trans.
,
56
(
5
), pp.
759
770
.
45.
Monmousseau
,
P.
, and
Fillon
,
M.
,
1999
, “
Analysis of Static and Dynamic Misaligned Tilting-Pad Journal Bearings
,”
Proc Inst Mech Eng Part J-J Eng Tribol.
,
213
(
4
), pp.
253
261
.
46.
Monmousseau
,
P.
, and
Fillon
,
M.
,
2000
, “
Transient Thermoelastohydrodynamic Analysis for Safe Operating Conditions of a Tilting-Pad Journal Bearing During Start-Up
,”
Tribol. Int.
,
33
(
3
), pp.
225
231
.
47.
Hagemann
,
T.
,
Zeh
,
C.
, and
Schwarze
,
H.
,
2019
, “
Heat Convection Coefficients of a Tilting-Pad Journal Bearing With Directed Lubrication
,”
Tribol. Int.
,
136
, pp.
114
126
.
48.
Hagemann
,
T.
,
Zemella
,
P.
,
Pfau
,
B.
, and
Schwarze
,
H.
,
2020
, “
Experimental and Theoretical Investigations on Transition of Lubrication Conditions for a Five-Pad Tilting-Pad Journal Bearing With Eccentric Pivot up to Highest Surface Speeds
,”
Tribol. Int.
,
142
, p.
106008
.
49.
Lyu
,
B.
,
Meng
,
X.
,
Zhang
,
R.
, and
Wen
,
C.
,
2021
, “
A Deterministic Contact Evolution and Scuffing Failure Analysis Considering Lubrication Deterioration Due to Temperature Rise Under Heavy Loads
,”
Eng. Fail. Anal.
,
123
, p.
105276
.
50.
Yan
,
K.
,
Li
,
H.
,
Ding
,
N.
,
Jiang
,
D.
, and
Meng
,
X.
,
2022
, “
Transient-Mixed Lubrication Model Numerically for Friction and Wear of Journal Bearings Under Heavy Load During Start-Up
,”
Ind. Lubr. Tribol.
,
74
(
10
), pp.
1174
1185
.
51.
Xie
,
Z.
,
Jiao
,
J.
,
He
,
T.
,
Xu
,
F.
, and
Zhang
,
J.
,
2023
, “
Lubrication Behaviors of a Novel Bearing With Fluid-Solid-Thermal (FST) Approach: Experimental and Theoretical Investigation
,”
Tribol. Int.
,
185
, p.
108481
.
52.
He
,
M.
,
2003
, “
Thermoelastohydrodynamic Analysis of Fluid Film Journal Bearings
,”
Ph.D. dissertation
,
University of Virginia
,
Charlottesville, VA
.
53.
Suh
,
J.
, and
Palazzolo
,
A.
,
2015
, “
Three-Dimensional Dynamic Model of TEHD Tilting-Pad Journal Bearing—Part I: Theoretical Modeling
,”
ASME J. Tribol.
,
137
(
4
), p.
041703
.
54.
Suh
,
J.
, and
Palazzolo
,
A.
,
2015
, “
Three-Dimensional Dynamic Model of TEHD Tilting-Pad Journal Bearing—Part II: Parametric Studies
,”
ASME J. Tribol.
,
137
(
4
), p.
041704
.
55.
Yang
,
J.
, and
Palazzolo
,
A.
,
2019
, “
Three-Dimensional Thermo-Elasto-Hydrodynamic Computational Fluid Dynamics Model of a Tilting Pad Journal Bearing—Part I: Static Response
,”
ASME J. Tribol.
,
141
(
6
), p.
061702
.
56.
Yang
,
J.
, and
Palazzolo
,
A.
,
2019
, “
Three-Dimensional Thermo-Elasto-Hydrodynamic Computational Fluid Dynamics Model of a Tilting Pad Journal Bearing—Part II: Dynamic Response
,”
ASME J. Tribol.
,
141
(
6
), p.
061703
.
57.
Chun
,
Y. D.
,
Lee
,
J.
,
Lee
,
J.
, and
Suh
,
J.
,
2023
, “
Thermal Preload for Predicting Performance Change Due to Pad Thermal Deformation of Tilting Pad Journal Bearing
,”
Lubricants
,
11
(
1
), p.
3
.
58.
Suh
,
J.
, and
Choi
,
Y. S.
,
2016
, “
Pivot Design and Angular Misalignment Effects on Tilting pad Journal Bearing Characteristics: Four Pads for Load on pad Configuration
,”
Tribol. Int.
,
102
, pp.
580
599
.
59.
Shi
,
Z.
,
Jin
,
Y.
, and
Yuan
,
X.
,
2019
, “
Influence of Pivot Design on Nonlinear Dynamic Analysis of Vertical and Horizontal Rotors in Tilting pad Journal Bearings
,”
Tribol. Int.
,
140
, p.
105859
.
60.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
J. Lubr. Technol.
,
100
(
1
), pp.
12
17
.
61.
Qiu
,
Y.
, and
Khonsari
,
M. M.
,
2011
, “
Experimental Investigation of Tribological Performance of Laser Textured Stainless Steel Rings
,”
Tribol. Int.
,
44
(
5
), pp.
635
644
.
62.
Xing
,
C.
,
2009
, “
Analysis of the Characteristics of a Squeeze Film Damper by Three-Dimensional Navier-Stokes Equations: A Numerical Approach and Experimental Validation
,”
Ph.D. dissertation
,
University of Akron
,
Akron, OH
.
63.
Cheng
,
F.
,
Wu
,
F.
,
Wang
,
S.
,
Peng
,
X.
,
Cao
,
Y.
, and
Yang
,
S.
,
2023
, “
A Prediction Model for Suction Cavitation Erosion in a Journal Bearing
,”
Tribol. Int.
,
184
, p.
108424
.
64.
Xu
,
W.
,
Tian
,
Y.
,
Li
,
K.
,
Zhang
,
M.
, and
Yang
,
J.
,
2022
, “
Reynolds Boundary Condition Realization in Journal Bearings: Location of oil Film Rupture Boundary With Layering-Sliding Mesh Method
,”
Tribol. Int.
,
165
, p.
107330
.
65.
Lee
,
S. C.
, and
Ren
,
N.
,
1996
, “
Behavior of Elastic-Plastic Rough Surface Contacts as Affected by Surface Topography, Load, and Material Hardness
,”
Eng. Fail. Anal.
,
39
(
1
), pp.
67
74
.
66.
Habchi
,
W.
,
2018
,
Finite Element Modelling of Elastohydrodynamic Lubrication Problems
,
John Wiley and Sons
,
Hoboken, NJ
.
67.
Heinrich
,
J. C.
,
Huyakorn
,
P. S.
,
Zienkiewicz
,
O. C.
, and
Mitchell
,
A. R.
,
1977
, “
An ‘Upwind’ Finite Element Scheme for Two-Dimensional Convective Transport Equation
,”
Int. J. Numer. Methods Eng.
,
11
(
1
), pp.
131
143
.
68.
Álvarez Hostos
,
J. C.
,
Cruchaga
,
M. A.
,
Fachinotti
,
V. D.
,
Zambrano Carrillo
,
J. A.
, and
Zamora
,
E.
,
2020
, “
A Plausible Extension of Standard Penalty, Streamline Upwind and Immersed Boundary Techniques to the Improved Element-Free Galerkin-Based Solution of Incompressible Navier–Stokes Equations
,”
Comput. Meth. Appl. Mech. Eng.
,
372
, p.
113380
.
69.
Kulhanek
,
C. D.
, and
Childs
,
D. W.
,
2012
, “
Measured Static and Rotordynamic Coefficient Results for a Rocker-Pivot, Tilting-Pad Bearing With 50 and 60% Offsets
,”
ASME J. Eng. Gas. Turbines Power
,
134
(
5
), p.
052505
.
70.
Boncompain
,
R.
,
Fillon
,
M.
, and
Frene
,
J.
,
1986
, “
Analysis of Thermal Effects in Hydrodynamic Bearings
,”
ASME J. Tribol.
,
108
(
2
), pp.
219
224
.
71.
Xiang
,
G.
,
Han
,
Y.
,
He
,
T.
,
Wang
,
J.
,
Xiao
,
K.
, and
Li
,
J.
,
2020
, “
Transient Tribo-Dynamic Model for Journal Bearings During Start-Up Considering 3D Thermal Characteristic
,”
Tribol. Int.
,
144
, p.
106123
.
72.
Bang
,
K. B.
,
Kim
,
J. H.
, and
Cho
,
Y. J.
,
2010
, “
Comparison of Power Loss and pad Temperature for Leading Edge Groove Tilting Pad Journal Bearings and Conventional Tilting Pad Journal Bearings
,”
Tribol. Int.
,
43
(
8
), pp.
1287
1293
.
73.
Gong
,
J.
,
Liu
,
K.
,
Zheng
,
Y.
, and
Meng
,
F.
,
2023
, “
Thermal-Elastohydrodynamic Lubrication Study of Misaligned Journal Bearing in Wind Turbine Gearbox
,”
Tribol. Int.
,
188
, p.
108887
.
You do not currently have access to this content.