Abstract

This paper is devoted to evaluating the quantification of uncertainty involved in the study of Aeolian vibrations of optical ground wire (OPGW) cable systems installed on overhead power transmission lines. The energy balance method (EBM) is widely used to estimate the severity of steady-state Aeolian vibrations. Although the EBM requires some experimental characterization of system parameters (as indicated by international standards), it is necessary to mention that such a procedure is connected with uncertainties which makes it difficult for the proper homologation of the cable systems. In this article, the parametric probabilistic approach is employed to quantify the level of uncertainty associated with the EBM in the study of Aeolian vibrations of OPGW. The relevant parameters of the EBM (damper properties, cable self-damping, and the power imparted by the wind) are assumed as random variables whose distribution is deduced by means of the maximum entropy principle. Then a Monte Carlo simulation is performed, and the input and output uncertainties are contrasted. Finally, a global sensitivity analysis is conducted to identify the Sobol' indices. Results indicate that parameters related to self-damping and damper are the most influential on uncertainty and output variability. In this sense, the present framework constitutes a powerful tool in the robust design of damper systems for OPGW cables.

References

1.
Cosmai
,
U.
,
Van Dyke
,
P.
,
Mazzola
,
L.
, and
Lillien
,
J.-L.
,
2017
,
Conductor Motions
,
Springer International Publishing
,
Cham
, pp.
559
711
.
2.
EPRI
,
2006
, “
Transmission Line Reference Book: Wind-Induced Conductor Motion
,”
Electrical Power Research Institute
,
Palo Alto, CA
.
3.
Cardou
,
A.
, and
Jolicoeur
,
C.
,
1997
, “
Mechanical Models of Helical Strands
,”
ASME Appl. Mech. Rev.
,
50
(
1
), pp.
1
14
.10.1115/1.3101684
4.
IEC, 2018, “IEC 60794-2018 - Generic specification - Basic Optical Cable Test procedures - Environmental Test Methods Standard,” International Electrotechnical Commission, Report No: 60794-1-22:2017.
5.
CIGRE, 1992, “CIGRE SC35-1992 - Optical Fibre Planning Guide for Power Utilities,” Electra, Report No. 45.
6.
Hardy
,
C.
,
1990
, “
Analysis of Self-Damping Characteristics of Stranded Cables in Transverse Vibrations
,”
Proceedings of the CSME Mechanical Engineering Forum
, University of Toronto, Canada, June 3–9, pp.
117
122
.
7.
CIGRE
,
2011
, “
State of the Art for Testing Self-Damping Characteristics of Conductors for Overhead Lines
,” Report No. 482.
8.
Noiseux
,
D. U.
,
1992
, “
Similarity Laws of the Internal Damping of Stranded Cables in Transverse Vibrations
,”
IEEE Trans. Power Delivery
,
7
(
3
), pp.
1574
1581
.10.1109/61.141877
9.
Diana
,
G.
,
Falco
,
M.
,
Cigada
,
A.
, and
Manenti
,
A.
,
2000
, “
On the Measurement of Overhead Transmission Lines Conductor Self-Damping
,”
IEEE Trans. Power Delivery
,
15
(
1
), pp.
285
292
.10.1109/61.847264
10.
Gunday
,
A.
, and
Karlık
,
S. E.
,
2013
, “
Optical Fiber Distributed Sensing of Temperature, Thermal¨ Strain and Thermo-Mechanical Force Formations on OPGW Cables Under Wind Effects
,” 2013 8th International Conference on Electrical and Electronics Engineering (
ELECO
), Bursa, Turkey, Nov. 28–30, pp.
462
467
.10.1109/ELECO.2013.6713885
11.
Campos
,
D. F.
,
Ajras
,
A. E.
, and
Piovan
,
M. T.
,
2021
, “
Bayesian Model Calibration for Bending Stiffness Assessment in OPGW Cables
,”
2021 International Conference on Electrical, Computer and Energy Technologies (ICECET)
, Cape Town, South Africa, Dec. 9–10, pp.
1
5
.
12.
Tavano, F., Cloutier, L., Claren, R., Ervik, M., Hagedorn, P., Hardy, C., Kern, G., Krispin, H.-J., Möcks, L., Rawlins, C. B., Dulhunty, P. W., Manenti, A., Tunstall, M., Asselin, J. M., Bückner, W., Havard, D. G., and Hearnshaw, D., and Diana, G., 2018, “Modelling of Aeolian Vibrations of Single Conductors,”
Modelling of Vibrations of Overhead Line Conductors
, Diana, G. (ed.), CIGRE Green Books, Springer, Cham.10.1007/978-3-319-72808-7_1
13.
Campos
,
D.
,
Loser
,
E.
, and
Piovan
,
M.
,
2023
, “
Self-Damping of Optical Ground Wire Cables: Ä Bayesian Approach
,”
J. Appl. Comput. Mech.
,
9
(
1
), pp.
205
216
.10.22055/jacm.2022.40878.3666
14.
Wang
,
Z.
,
Li
,
H.-N.
, and
Song
,
G.
,
2021
, “
Aeolian Vibration Control of Power Transmission Line Using Stockbridge Type Dampers—A Review
,”
Int. J. Struct. Stability Dyn.
,
21
(
01
), p.
2130001
.10.1142/S0219455421300019
15.
Claren
,
R.
, and
Diana
,
G.
,
1969
, “
Mathematical Analysis of Transmission Line Vibration
,”
IEEE Trans. Power Appar. Syst.
,
PAS-88
(
12
), pp.
1741
1771
.10.1109/TPAS.1969.292291
16.
Hagedorn
,
P.
,
1982
, “
On the Computation of Damped Wind-Excited Vibrations of Overhead Transmission Lines
,”
J. Sound Vib.
,
83
(
2
), pp.
253
271
.10.1016/S0022-460X(82)80090-4
17.
Hagedorn
,
P.
,
1987
, “
Wind-Excited Vibrations of Transmission Lines: A Comparison of Different Mathematical Models
,”
Math. Modell.
,
8
, pp.
352
358
.10.1016/0270-0255(87)90604-X
18.
Wolf
,
H.
,
Adum
,
B.
,
Semenski
,
D.
, and
Pustaic
,
D.
,
2008
, “
Using the Energy Balance Method in Estimation of Overhead Transmission Line Aeolian Vibrations
,”
Strojarstvo
,
50
(
10
), pp.
269
276
.
19.
Lu
,
M.
,
2004
, “
A Practical Approach to the Aeolian Vibration of Overhead Power Lines
,”
Proceedings of 15th Conference on Electric Power Supply Industry
, Shanghai, China, Oct. 18–22, pp.
1
8
.
20.
Carroll
,
J. S.
,
1936
, “
Laboratory Studies of Conductor Vibration
,”
Trans. Am. Inst. Electr. Eng.
,
55
(
5
), pp.
543
547
.10.1109/T-AIEE.1936.5057307
21.
Diana
,
G.
, and
Falco
,
M.
,
1971
, “
On the Forces Transmitted to a Vibrating Cylinder by a Blowing fluid - Experimental Study and Analysis of the Phenomenon
,”
Meccanica
,
6
(
1
), pp.
9
22
.10.1007/BF02129047
22.
Rawlins
,
C. B.
,
1983
, “
Wind Tunnel Measurements of the Power Imparted to a Model of a Vibrating Conductor
,”
IEEE Trans. Power Appar. Syst.
,
PAS-102
(
4
), pp.
963
971
.10.1109/TPAS.1983.317810
23.
IEC
,
2013
, “
IEC 62567-2013 - Methods for Testing Self-Damping Characteristics of Conductors
,”
International Electrotechnical Commission
, Report No. 625567:2013.
24.
Falco
,
M.
, and
Gasparetto
,
M.
,
1974
, “
On Vibrations Induced in a Cylinder in the Wake of Another Due to Vortex Shedding
,”
Meccanica
,
9
, pp.
325
336
.10.1007/BF02175813
25.
Marquardt
,
D. W.
,
1963
, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
J. Soc. Ind. Appl. Math.
,
11
(
2
), pp.
431
441
.10.1137/0111030
26.
IEC
,
2020
, “
IEC 61897 – Overhead lines – Requirements and Tests for Aeolian Vibration Dampers Standard
,”
International Electrotechnical Commission
, Report No. 61897:2020.
27.
Shannon
,
C. E.
,
1948
, “
A Mathematical Theory of Communication
,”
Bell Syst. Tech. J.
,
27
, pp.
379
423
.10.1002/j.1538-7305.1948.tb01338.x
28.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, et al.,
2008
,
Global Sensitivity Analysis: The Primer
, Wiley, Chichester, UK.
29.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
964
979
.10.1016/j.ress.2007.04.002
30.
Reuter
,
U.
, and
Liebscher
,
M.
,
2008
,
Global Sensitivity Analysis in View of Nonlinear Structural Behavior
,
LS-DYNA Anwenderforum
,
Bamberg
.
31.
Sobol
,
I.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
2
), pp.
271
280
.10.1016/S0378-4754(00)00270-6
32.
Marelli
,
S.
, and
Sudret
,
B.
,
2014
, “
UQLab: A Framework for Uncertainty Quantification in MATLAB
,”
Proceedings of 2nd International Conference on Vulnerability, Risk Analysis and Management (ICVRAM2014)
, Liverpool, UK, July 13–16, pp.
2554
2563
.
33.
Jaynes
,
E. T.
,
1957
, “
Information Theory and Statistical Mechanics
,”
Phys. Rev.
,
106
, pp.
620
630
.10.1103/PhysRev.106.620
34.
Awad
,
M.
,
Senga Kiesse
,
T.
,
Assaghir
,
Z.
, and
Ventura
,
A.
,
2019
, “
Convergence of Sensitivity Analysis Methods for Evaluating Combined Influences of Model Inputs
,”
Reliab. Eng. Syst. Saf.
,
189
, pp.
109
122
.10.1016/j.ress.2019.03.050
35.
Kraus
,
M.
, and
Hagedorn
,
P.
,
1991
, “
Aeolian Vibrations: Wind Energy Input Evaluated From Measurements on an Energized Transmission Line
,”
IEEE Trans. Power Delivery
,
6
(
3
), pp.
1264
1270
.10.1109/61.85875
You do not currently have access to this content.