The title problem is analyzed when nodal lines are concentric ellipses by using boundary characteristic orthonormal polynomials in Rayleigh-Ritz method for Winkler foundation where quadratically varying thickness is controlled by two independent taper constants. Numerical results for frequencies, nodal ellipses and mode shapes for first four modes of vibration are presented for plates of free, simply-supported and clamped edge conditions for various values of aspect ratio, taper, orthotropy and foundation parameters.

1.
Leissa, A. W., 1969, Vibration of Plates, Office of Technology Utilization, NASA, NASA SP-160, Washington.
2.
Leissa
,
A. W.
,
1977
, “
Recent Research in Plate Vibrations: Classical Theory
,”
Shock Vib. Dig.
,
9
(
10
), pp.
3
24
.
3.
Leissa
,
A. W.
,
1977
, “
Recent Research in Plate Vibrations, 1973–1976: Complicating Effects
,”
Shock Vib. Dig.
9
(
11
), pp.
1
35
.
4.
Leissa
,
A. W.
,
1981
, “
Plate Vibration Research, 1976–1980: Classical Theory
,”
Shock Vib. Dig.
13
(
9
), pp.
11
22
.
5.
Leissa
,
A. W.
,
1981
, “
Plate Vibration Research, 1976–1980: Classical Theory
,”
Shock Vib. Dig.
13
(
10
), pp.
19
36
.
6.
Leissa
,
A. W.
,
1987
, “
Recent Studies in Plate Vibrations 1981–1985, Part I, Classical Theory
,”
Shock Vib. Dig.
19
(
2
), pp.
11
18
.
7.
Leissa
,
A. W.
,
1987
, “
Recent Studies in Plate Vibrations: 1981–1985, Part II, Complicating Effects.
Shock Vib. Dig.
19
(
3
), pp.
10
24
.
8.
Singh
,
B.
, and
Tyagi
,
D. K.
,
1985
, “
Transverse Vibration of Elliptic Plate with Variable Thickness
,”
J. Sound Vib.
,
99
, pp.
379
391
.
9.
Narita
,
Y.
,
1985
, “
Natural Frequencies of Free, Orthotropic Elliptic Plates
,”
J. Sound Vib.
,
100
, pp.
83
89
.
10.
Narita
,
Y.
,
1986
, “
Free Vibration Analysis of Orthotropic Elliptical Plates Resting on Arbitrary Distributed Point Support
,”
J. Sound Vib.
,
108
, pp.
1
10
.
11.
Singh
,
B.
, and
Chakraverty
,
S.
,
1991
, “
Transverse Vibration of Completely Free Elliptic and Circular Plates Using Orthogonal Polynomials in the Rayleigh-Ritz Method
,”
Int. J. Mech. Sci.
,
33
, pp.
741
751
.
12.
Singh
,
B.
, and
Chakraverty
,
S.
,
1992
, “
Transverse Vibration of Circular and Elliptic Plates with Quadratically Varying Thickness
,”
Appl. Math. Model.
,
16
, pp.
269
274
.
13.
Singh
,
B.
, and
Chakraverty
,
S.
,
1992
, “
On the Use of Orthogonal Polynomials in Rayleigh-Ritz Method for the Study of Transverse Vibration of Elliptic Plates
,”
Comput. Struct.
,
43
, pp.
439
443
.
14.
Singh
,
B.
, and
Chakraverty
,
S.
,
1992
, “
Transverse Vibration of Simply Supported Elliptic and Circular Plates Using Orthogonal Polynomials in Two Variables
,”
J. Sound Vib.
,
152
, pp.
149
155
.
15.
Singh
,
B.
, and
Chakraverty
,
S.
,
1994
, “
Use of Characteristic Orthogonal Polynomials in Two Dimensions for Transverse Vibration of Elliptic and Circular Plates With Variable Thickness
,”
J. Sound Vib.
,
173
, pp.
289
299
.
16.
Lam
,
K. Y.
,
Liew
,
K. M.
, and
Chow
,
S. T.
,
1992
, “
Use of Two Dimensional Orthogonal Polynomials for Vibration of Analysis of Circular and Elliptic Plates
,”
J. Sound Vib.
,
154
, pp.
261
269
.
17.
Rajalingham
,
C.
, and
Bhat
,
R. B.
,
1993
, “
Axisymmetric Vibration of Circular Plates and Its Analog in Elliptic Plates Using Characteristic Orthogonal Polynomials
,”
J. Sound Vib.
,
161
, pp.
109
118
.
18.
Chakraverty
,
S.
, and
Petyt
,
M.
,
1999
, “
Free Vibration Analysis of Elliptic and Circular Plates Having Rectangular Orthotropy
,”
Struc. Eng. and Mech.
,
7
, pp.
53
67
.
19.
Chakraverty
,
S.
, and
Petyt
,
M.
,
1999
, “
Vibration of Non-homogeneous Plates Using Two-dimensional Orthogonal Polynomials as Shape Functions in the Rayleigh-Ritz Method
,”
J. Mech. Eng. Sci.
,
213
(
C7
), pp.
707
714
.
20.
Rajalingham
,
C.
,
Bhat
,
R. B.
, and
Xistris
,
G. D.
,
1994
, “
Vibration of Clamped Elliptic Plates Using Exact Circular Plates Modes as Shape Function in Rayleigh-Ritz Method
,”
Int. J. Mech. Sci.
,
36
, pp.
231
246
.
21.
Liew
,
K. M.
,
1993
, “
On the Use of 2-D Orthogonal Polynomials in the Rayleigh Ritz Method for Flexural Vibration of Annular Sector Plates of Arbitrary Shapes
,”
Int. J. Mech. Sci.
,
35
(
2
), pp.
129
139
.
22.
Lim
,
C. W.
, and
Liew
,
K. M.
,
1995
, “
Vibration of Perforated Plates With Rounded Corners
,”
J. Eng. Mech.
,
121
(
2
), pp.
203
213
.
23.
Wang
,
C. M.
, and
Wang
,
L.
,
1994
, “
Vibration and Buckling of Super Elliptical Plates
,”
J. Sound Vib.
,
171
, pp.
301
314
.
24.
Chihara, T. S., 1978, An Introduction to Orthogonal Polynomials, Gordan and Breach Science Publications, New York.
You do not currently have access to this content.