Abstract

The present study deals with the response of a damped Mathieu equation with hard constant external loading. A second-order perturbation analysis using the method of multiple scales (MMS) unfolds resonances and stability. Non-resonant and low-frequency quasi-static responses are examined. Under constant loading, primary resonances are captured with a first-order analysis, but are accurately described with the second-order analysis. The response magnitude is of order ϵ0, where ϵ is the small bookkeeping parameter, but can become arbitrarily large due to a small denominator as the Mathieu system approaches the primary instability wedge. A superharmonic resonance of order two is unfolded with the second-order MMS. The magnitude of this response is of order ϵ and grows with the strength of parametric excitation squared. An nth-order multiple scales analysis under hard constant loading will indicate conditions of superharmonic resonances of order n. Subharmonic resonances do not produce a non-zero steady-state harmonic, but have the instability property known to the regular Mathieu equation. Analytical expressions for predicting the magnitude of responses are presented and compared with numerical results for a specific set of system parameters. In all cases, the second-order analysis accommodates slow time-scale effects, which enable responses of order ϵ or ϵ0. The behavior of this system could be relevant to applications such as large wind-turbine blades and parametric amplifiers.

References

1.
Ramakrishnan
,
V.
, and
Feeny
,
B. F.
,
2023
, “
Responses of a Strongly Forced Mathieu Equation. Part 1: Cyclic Loading
,”
ASME J. Vib. Acoust
.
2.
Ishida
,
Y.
,
Inoue
,
T.
, and
Nakamura
,
K.
,
2009
, “
Vibration of a Wind Turbine Blade (Theoretical Analysis and Experiment Using a Single Rigid Blade Model)
,”
J. Environ. Eng.
,
4
(
2
), pp.
443
454
.
3.
Allen
,
M. S.
,
Sracic
,
M. W.
,
Chauhan
,
S.
, and
Hansen
,
M. H.
,
2011
, “
Output-Only Modal Analysis of Linear Time-Periodic Systems With Application to Wind Turbine Simulation Data
,”
Mech. Syst. Signal Process.
,
25
(
4
), pp.
1174
1191
.
4.
Ramakrishnan
,
V.
, and
Feeny
,
B. F.
,
2012
, “
Resonances of the Forced Mathieu Equation With Reference to Wind Turbine Blades
,”
ASME J. Vib. Acoust.
,
134
(
6
), p.
064501
.
5.
Acar
,
G. D.
,
Acar
,
M. A.
, and
Feeny
,
B. F.
,
2020
, “
Parametric Resonances of a Three-Blade-Rotor System With Reference to Wind Turbines
,”
ASME J. Vib. Acoust.
,
142
(
2
), p.
021013
.
6.
Inoue
,
T.
,
Ishida
,
Y.
, and
Kiyohara
,
T.
,
2012
, “
Nonlinear Vibration Analysis of the Wind Turbine Blade (Occurrence of the Superharmonic Resonance in the Out-of-Plane Vibration of the Elastic Blade)
,”
ASME J. Vib. Acoust.
,
134
(
3
), p.
031009
.
7.
Ikeda
,
T.
,
Harata
,
Y.
, and
Ishida
,
Y.
,
2018
, “
Parametric Instability and Localization of Vibrations in Three-Blade Wind Turbines
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
7
), p.
071001
.
8.
Acar
,
G.
, and
Feeny
,
B. F.
,
2018
, “
Bend-Bend-Twist Vibrations of a Wind Turbine Blade
,”
Wind Energy
,
21
(
1
), pp.
15
28
.
9.
Sapmaz
,
A.
, and
Feeny
,
B. F.
,
2018
, “
Second-Order Perturbation Analysis of In-Plane Blade-Hub Dynamics of Horizontal-Axis Wind Turbines
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Canada
,
Aug. 26–29
,
American Society of Mechanical Engineers
, Paper No. DETC2018-88203.
10.
Rugar
,
D.
, and
Grutter
,
P.
,
1991
, “
Mechanical Parametric Amplification and Thermomechanical Noise Squeezing
,”
Phys. Rev. Lett.
,
67
(
6
), pp.
699
702
.
11.
Zalalutdinov
,
M.
,
Olkhovets
,
A.
,
Zehnder
,
A.
,
Ilic
,
B.
,
Czaplewski
,
D.
,
Craighead
,
H. G.
, and
Parpia
,
J. M.
,
2001
, “
Optically Pumped Parametric Amplification for Micromechanical Oscillators
,”
Appl. Phys. Lett.
,
78
(
20
), pp.
3142
3144
.
12.
Rhoads
,
J. F.
,
Shaw
,
S. W.
,
Turner
,
K. L.
,
Moehlis
,
J.
,
DeMartini
,
B. E.
, and
Zhang
,
W.
,
2006
, “
Generalized Parametric Resonance in Electrostatically Actuated Microelectromechanical Oscillators
,”
J. Sound Vib.
,
296
(
4–5
), pp.
797
829
.
13.
Rhoads
,
J. F.
, and
Shaw
,
S. W.
,
2010
, “
The Impact of Nonlinearity on Degenerate Parametric Amplifiers
,”
Appl. Phys. Lett.
,
96
(
23
), p.
234101
.
14.
Ramakrishnan
,
V.
, and
Feeny
,
B. F.
,
2022
, “
Primary Parametric Amplification in a Weakly Forced Mathieu Equation
,”
ASME J. Vib. Acoust.
,
144
(
5
), p.
051006
.
15.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley Interscience Publications, John Wiley and Sons
,
New York
.
16.
McLachlan
,
N.
,
1964
,
Theory and Application of Mathieu Functions
,
Dover Publications
,
New York
.
17.
Rand
,
R.
,
2005
,
Lecture Notes on Nonlinear Vibration
, Available at http://audiophile.tam.cornell.edu/randdocs/nlvibe52.pdf,
Ithaca, NY
.
18.
Acar
,
G.
, and
Feeny
,
B. F.
,
2016
, “
Floquet-Based Analysis of General Responses of the Mathieu Equation
,”
ASME J. Vib. Acoust.
,
138
(
4
), p.
041017
.
19.
Nayfeh
,
A. H.
,
1986
, “Perturbation Methods in Nonlinear Dynamics,”
Lecture Notes in Physics
,
Vol. 247
,
M.
Jowett
,
M.
Month
S.
Turner
, eds.,
Springer-Verlag
,
Berlin
, pp.
238
314
.
20.
Ramakrishnan
,
V.
,
2017
, “
Analysis of Wind Turbine Blade Vibration and Drivetrain Loads
,” Ph.D. thesis,
Michigan State University
,
East Lansing, MI
.
21.
Rhoads
,
J.
,
Miller
,
N.
,
Shaw
,
S.
, and
Feeny
,
B.
,
2008
, “
Mechanical Domain Parametric Amplification
,”
ASME J. Vib. Acoust.
,
130
(
6
), p.
061006
.
You do not currently have access to this content.