Abstract

Dynamically substructured systems (DSS) are a typical technique to achieve real-time numerical simulations combined with physically tested components. However, a rigorous feasibility analysis before the implementation is missing. This paper is aimed to fill this gap by establishing rigorous conditions for when DSS is suitable for dynamic testing. The proposed method is based on novel symbolic recursive formulations for the transfer functions describing a generic lumped parameter vibrating structure, enabling the analysis of structural and other properties without requiring the computation of explicit symbolic expressions for the transfer functions involved, representing a significant breakthrough as it allows to perform feasibility analysis in analytical form, rather than solely relying on numerical approaches. The series of analytical conclusions presented in this paper, and future ones unlocked by the proposed approach, will significantly enrich the research in the community of DSS and structural vibrations. In particular, the proposed approach allows performing analysis of causality, controllability, and observability using much reduced knowledge of the structure, thus significantly simplifying such analysis. Analytical conclusions on stability can also be made with the help of novel recursive form, removing the need of repeatedly calculating the roots of characteristic equations, a task that can be performed only via numerical approaches and for which analytical results are not available. The proposed methodology can be applied to a whole class of vibration problems and is not linked to any specific structure, going beyond the specific examples available in the literature.

References

1.
Chen
,
C.
,
Ricles
,
J. M.
,
Marullo
,
T. M.
, and
Mercan
,
O.
,
2009
, “
Real-Time Hybrid Testing Using the Unconditionally Stable Explicit CR Integration Algorithm
,”
Earthquake Eng. Struct. Dyn.
,
38
(
1
), pp.
23
44
.
2.
Mosterman
,
P. J.
,
1999
, “
An Overview of Hybrid Simulation Phenomena and Their Support by Simulation Packages
,”
Hybrid Systems: Computation and Control
,
Berlin
,
Jan. 1
, Springer, pp.
165
177
.
3.
Maghareh
,
A.
,
Dyke
,
S. J.
,
Prakash
,
A.
, and
Bunting
,
G. B.
,
2014
, “
Establishing a Predictive Performance Indicator for Real-Time Hybrid Simulation
,”
Earthquake Eng. Struct. Dyn.
,
43
(
15
), pp.
2299
2318
.
4.
Tu
,
J. Y.
,
2013
, “
Development of Numerical-Substructure-Based and Output-Based Substructuring Controllers
,”
Struct. Control Health Monit.
,
20
(
6
), pp.
918
936
.
5.
Klerk
,
D. D.
,
Rixen
,
D. J.
, and
Voormeeren
,
S. N.
,
2008
, “
General Framework for Dynamic Substructuring: History, Review and Classification of Techniques
,”
AIAA J.
,
46
(
5
), pp.
1169
1181
.
6.
Lim
,
C. N.
,
Neild
,
S. A.
,
Stoten
,
D. P.
,
Drury
,
D.
, and
Taylor
,
C. A.
,
2007
, “
Adaptive Control Strategy for Dynamic Substructuring Tests
,”
J. Eng. Mech.
,
133
(
8
), pp.
864
873
.
7.
Gawthrop
,
P.
,
Wallace
,
M.
,
Neild
,
S.
, and
Wagg
,
D.
,
2007
, “
Robust Real-Time Substructuring Techniques for Under-Damped Systems
,”
Struct. Control Health Monit.
,
14
(
4
), pp.
591
608
.
8.
Tu
,
J.-Y.
,
Chen
,
C.-Y.
, and
Hsiao
,
W.-D.
,
2015
, “
Dynamic and Numerical Issues Relating to the Control Robustness of Dynamically Substructured Systems
,”
Struct. Control Health Monit.
,
22
(
3
), pp.
518
534
.
9.
Yamaguchi
,
T.
, and
Stoten
,
D. P.
,
2016
, “
Synthesised H/μ Control Design for Dynamically Substructured Systems
,”
J. Phys.: Conf. Ser.
,
744
(
1
), p.
012205
.
10.
Wu
,
B.
, and
Zhou
,
H.
,
2014
, “
Sliding Mode for Equivalent Force Control in Real-Time Substructure Testing
,”
Struct. Control Health Monitor.
,
21
(
10
), pp.
1284
1303
.
11.
Wu
,
B.
, and
Wang
,
T.
,
2014
, “
Model Updating With Constrained Unscented Kalman Filter for Hybrid Testing
,”
Smart Struct. Syst.
,
14
(
6
), pp.
1105
1129
.
12.
Carrion
,
J. E.
,
2008
, “
Real-Time Hybrid Testing Using Model-Based Delay Compensation
,”
Smart Struct. Syst.
,
4
(
6
), pp.
809
828
.
13.
Liu
,
J.
,
Dyke
,
S. J.
,
Liu
,
H.-J.
,
Gao
,
X.-Y.
, and
Phillips
,
B.
,
2013
, “
A Novel Integrated Compensation Method for Actuator Dynamics in Real-Time Hybrid Structural Testing
,”
Struct. Control Health Monit.
,
20
(
7
), pp.
1057
1080
.
14.
Shi
,
P.
,
Wu
,
B.
, and
Chang
,
C.-M.
,
2016
, “
Real-Time Hybrid Testing With Equivalent Force Control Method Incorporating Kalman Filter
,”
Struct. Control Health Monit.
,
23
(
4
), pp.
735
748
.
15.
Maghareh
,
A.
,
Dyke
,
S.
,
Rabieniaharatbar
,
S.
, and
Prakash
,
A.
,
2017
, “
Predictive Stability Indicator: A Novel Approach to Configuring a Real-Time Hybrid Simulation
,”
Earthquake Eng. Struct. Dyn.
,
46
(
1
), pp.
95
116
.
16.
Botelho
,
R. M.
,
Gao
,
X.
,
Avci
,
M.
, and
Christenson
,
R.
,
2022
, “
A Robust Stability and Performance Analysis Method for Multi-actuator Real-Time Hybrid Simulation
,”
Struct. Control Health Monit.
,
29
(
10
), p.
e3017
.
17.
Enokida
,
R.
, and
Kajiwara
,
K.
,
2019
, “
Nonlinear Signal-Based Control for Single-Axis Shake Tables Supporting Nonlinear Structural Systems
,”
Struct. Control Health Monit.
,
26
(
9
), p.
e2376
.
18.
Drazin
,
P. L.
, and
Govindjee
,
S.
,
2017
, “
Hybrid Simulation Theory for a Classical Nonlinear Dynamical System
,”
J. Sound Vib.
,
392
(
18
), pp.
240
259
.
19.
Stoten
,
D. P.
,
Yamaguchi
,
T.
, and
Yamashita
,
Y.
,
2016
, “
Dynamically Substructured System Testing for Railway Vehicle Pantographs
,”
J. Phys.: Conf. Ser.
,
744
(
1
), p.
012204
.
20.
Facchinetti
,
A.
, and
Bruni
,
S.
,
2012
, “
Hardware-in-the-Loop Hybrid Simulation of Pantograph–Catenary Interaction
,”
J. Sound Vib.
,
331
(
12
), pp.
2783
2797
.
21.
Hong
,
W.
,
Kang
,
S.
,
Lee
,
J.-S.
,
Byun
,
Y.
, and
Choi
,
C.
,
2016
, “
Characterization of Railroad Track Substructures Using Dynamic and Static Cone Penetrometer
,”
Proceedings of the 5th International Conference on Geotechnical and Geophysical Site Characterisation, ISC 2016
,
Gold Coast, Australia
,
Sept. 5–9
, Vol. 1, Australian Geomechanics Society, pp.
707
710
.
22.
Allen
,
M. S.
, and
Mayes
,
R. L.
,
2018
, “
Recent advances to estimation of fixed-interface modal models using dynamic substructuring
,”
Proceedings of the 36th International Modal Analysis Conference
,
Orlando, FL
,
May 1
, Vol. 4, Springer, pp.
157
170
.
23.
Mayes
,
R. L.
, and
Arviso
,
M.
,
2010
, “
Design Studies for the Transmission Simulator Method of Experimental Dynamic Substructuring
,”
Proceedings of the 24th ISMA
,
Leuven, Belgium
,
Sept. 20–22
, pp.
1929
1938
.
24.
van der Seijs
,
M.
, and
Rixen
,
D.
,
2016
, “Experimental Dynamic Substructuring: Analysis and Design Strategies for Vehicle Development,” PhD thesis, Delft University of Technology, Delft.
25.
Stoten
,
D. P.
, and
Hyde
,
R. A.
,
2006
, “
Adaptive Control of Dynamically Substructured Systems: The Single-Input Single-Output Case
,”
Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng.
,
220
(
2
), pp.
63
79
.
26.
Zapateiro
,
M.
,
Karimi
,
H. R.
,
Luo
,
N.
, and
Spencer Jr
,
B. F.
,
2010
, “
Real-Time Hybrid Testing of Semiactive Control Strategies for Vibration Reduction in a Structure With MR Damper
,”
Struct. Control Health Monit.
,
17
(
4
), pp.
427
451
.
27.
Chu
,
S.-Y.
,
Lu
,
L.-Y.
, and
Yeh
,
S.-W.
,
2018
, “
Real-Time Hybrid Testing of a Structure With a Piezoelectric Friction Controllable Mass Damper by Using a Shake Table
,”
Struct. Control Health Monit.
,
25
(
3
), p.
e2124
.
28.
Zhu
,
F.
,
Wang
,
J.-T.
,
Jin
,
F.
,
Lu
,
L.-Q.
,
Gui
,
Y.
, and
Zhou
,
M.-X.
,
2017
, “
Real-Time Hybrid Simulation of the Size Effect of Tuned Liquid Dampers
,”
Struct. Control Health Monit.
,
24
(
9
), p.
e1962
.
29.
Mercan
,
O.
,
Ricles
,
J.
,
Sause
,
R.
, and
Marullo
,
T.
,
2008
, “
Real-Time Large-Scale Hybrid Testing for Seismic Performance Evaluation of Smart Structures
,”
Smart Struct. Syst.
,
4
(
5
), pp.
667
684
.
30.
Londoño
,
J. M.
,
Serino
,
G.
,
Wagg
,
D. J.
,
Neild
,
S. A.
, and
Crewe
,
A. J.
,
2012
, “
On the Assessment of Passive Devices for Structural Control Via Real-Time Dynamic Substructuring
,”
Struct. Control Health Monit.
,
19
(
8
), pp.
701
722
.
31.
Fu
,
B.
,
Jiang
,
H.
, and
Wu
,
T.
,
2019
, “
Experimental Study of Seismic Response Reduction Effects of Particle Damper Using Substructure Shake Table Testing Method
,”
Struct.Control Health Monit.
,
26
(
2
), p.
e2295
.
32.
Bursi
,
O. S.
,
Abbiati
,
G.
, and
Reza
,
M. S.
,
2014
, “
A Novel Hybrid Testing Approach for Piping Systems of Industrial Plants
,”
Smart Struct. Syst.
,
14
(
6
), pp.
1005
1030
.
33.
Guo
,
J.
,
Tang
,
Z.
,
Chen
,
S.
, and
Li
,
Z.
,
2016
, “
Control Strategy for the Substructuring Testing Systems to Simulate Soil–Structure Interaction
,”
Smart Struct. Syst.
,
18
(
6
), pp.
1169
1188
.
34.
Terkovics
,
N.
,
Neild
,
S.
,
Lowenberg
,
M.
,
Szalai
,
R.
, and
Krauskopf
,
B.
,
2016
, “
Substructurability: the Effect of Interface Location on a Real-Time Dynamic Substructuring Test
,”
Proc. R. Soc. A
,
472
(
2192
), p.
20160433
.
35.
Gawthrop
,
P.
,
Neild
,
S.
,
Gonzalez-Buelga
,
A.
, and
Wagg
,
D.
,
2009
, “
Causality in Real-Time Dynamic Substructure Testing
,”
Mechatronics
,
19
(
7
), pp.
1105
1115
.
36.
Hu
,
A.
, and
Paoletti
,
P.
,
2020
, “
A Novel Control Architecture for Marginally Stable Dynamically Substructured Systems
,”
Mech. Syst. Signal Process.
,
143
(
22
), p.
106834
.
37.
Oppenheim
,
A.
,
Willsky
,
A.
,
Nawab
,
H.
, and
Hamid
,
S.
,
1998
,
Signals and Systems
,
Pearson Education
,
London
.
38.
Li
,
G.
,
2014
, “
Dynamically Substructured System Frameworks With Strict Separation of Numerical and Physical Components
,”
Struct. Control Health Monit.
,
21
(
10
), pp.
1316
1333
.
39.
Kalman
,
R.
,
1959
, “
On the General Theory of Control Systems
,”
IRE Trans. Autom. Control
,
4
(
3
), pp.
110
110
.
40.
Antsaklis
,
P.
, and
Michel
,
A.
,
2007
,
A Linear Systems Primer
,
Birkhäuser
,
Boston, MA
.
41.
Neild
,
S.
,
Stoten
,
D.
,
Drury
,
D.
, and
Wagg
,
D.
,
2005
, “
Control Issues Relating to Real-Time Substructuring Experiments Using a Shaking Table
,”
Earthquake Eng. Struct. Dyn.
,
34
(
9
), pp.
1171
1192
.
42.
Tu
,
J.-Y.
,
Hsiao
,
W.-D.
, and
Chen
,
C.-Y.
,
2014
, “
Modelling and Control Issues of Dynamically Substructured Systems: Adaptive Forward Prediction Taken as an Example
,”
Proc. R. Soc. A
,
470
(
2168
), p.
20130773
.
43.
Barton
,
D. A.
,
2017
, “
Control-Based Continuation: Bifurcation and Stability Analysis for Physical Experiments
,”
Mech. Syst. Signal Process.
,
84
(
4
), pp.
54
64
.
44.
Del Carpio Ramos
,
M.
,
Mosqueda
,
G.
, and
Hashemi
,
M. J.
,
2016
, “
Large-Scale Hybrid Simulation of a Steel Moment Frame Building Structure Through Collapse
,”
J. Struct. Eng.
,
142
(
1
), p.
04015086
.
You do not currently have access to this content.